《2022-2023学年那曲市中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年那曲市中考适应性考试数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列计算正确的是ABCD2将一副直角三角尺如图放置,若AOD=20,则BOC的大小为( )A140B
2、160C170D1503如图,若ABCD,CDEF,那么BCE( )A12B21C18012D180214如图,在扇形CAB中,CA=4,CAB=120,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()ABC10D5下列图形中,既是轴对称图形又是中心对称图形的是ABCD6如图,A、B、C、D四个点均在O上,AOD=50,AODC,则B的度数为()A50 B55 C60 D657如图,O的半径为6,直径CD过弦EF的中点G,若EOD60,则弦CF的长等于( )A6B6C3D98若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:ABCD9对于有理数
3、x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,则的值为( )A-1B-11C1D1110的绝对值是()A4BC4D0.411若代数式有意义,则实数x的取值范围是()Ax0Bx0Cx0D任意实数12一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,反比例函数y(x0)的图象经过点A(2,2),过点A作ABy轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换
4、得到的点B在此反比例函数的图象上,则t的值是()A1+B4+C4D-1+14如图,的顶点落在两条平行线上,点D、E、F分别是三边中点,平行线间的距离是8,移动点A,当时,EF的长度是_15抛物线y=x2+4x1的顶点坐标为 16已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_17点A(1,2),B(n,2)都在抛物线y=x24x+m上,则n=_18如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到
5、两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点下图中的P,Q两点即为同族点 (1)已知点A的坐标为(3,1),在点R(0,4),S(2,2),T(2,3)中,为点A的同族点的是 ;若点B在x轴上,且A,B两点为同族点,则点B的坐标为 ;(2)直线l:y=x3,与x轴交于点C,与y轴交于点D,M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围20(6分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴
6、庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率21(6分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,五个等级将所得数据绘制成如下统计图根据图中信息,解答下列问题:该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在_等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数22(8分)如图
7、,已知A(4,n),B(2,4)是一次函数ykx+b的图象和反比例函数y的图象的两个交点求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围23(8分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件使四边形BEDF为菱形24(10分)已知抛物线y=2x2+4x+c(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(1,0),求方程2x2+4x+c=0的根25(10分)为迎接“全民阅读日“系列活动,某校围
8、绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次共抽查了八年级学生多少人;(2)请直接将条形统计图补充完整;(3)在扇形统计图中,11.5小时对应的圆心角是多少度;(4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.51.5小时的有多少人?26(12分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均
9、不完整)请根据统计图中的信息解答下列问题:本次抽查的样本容量是;在扇形统计图中,“主动质疑”对应的圆心角为度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?27(12分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每
10、天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可【详解】、与不是同类项,不能合并,此选项错误;、,此选项错误;、,此选项正确;、,此选项错误故选:【点睛】此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键2、B【解析】试题分析:根据AOD=20可得:AOC=70,根据题意可得:BOC=AOB+AOC=90+70=1
11、60.考点:角度的计算3、D【解析】先根据ABCD得出BCD=1,再由CDEF得出DCE=180-2,再把两式相加即可得出结论【详解】解:ABCD,BCD=1,CDEF,DCE=180-2,BCE=BCD+DCE=180-2+1故选:D【点睛】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补4、D【解析】如图,作PAP=120,则AP=2AB=8,连接PP,BP,则1=2,推出APDABP,得到BP=2PD,于是得到2PD+PB=BP+PBPP,根据勾股定理得到PP=,求得2PD+PB4,于是得到结论【详解】如图,作PAP=120,则AP=2AB=8,连接PP,B
12、P,则1=2,=2,APDABP,BP=2PD,2PD+PB=BP+PBPP,PP=,2PD+PB4,2PD+PB的最小值为4,故选D【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键5、D【解析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合
13、题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.6、D【解析】试题分析:连接OC,根据平行可得:ODC=AOD=50,则DOC=80,则AOC=130,根据同弧所对的圆周角等于圆心角度数的一半可得:B=1302=65.考点:圆的基本性质7、B【解析】连接DF,根据垂径定理得到 , 得到DCF=EOD=30,根据圆周角定理、余弦的定义计算即可【详解】解:连接DF,直径CD过弦EF的中点G,DCF=EOD=30,CD是O的直径
14、,CFD=90,CF=CDcosDCF=12 = ,故选B【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键8、B【解析】由方程有两个不相等的实数根,可得,解得,即异号,当时,一次函数的图象过一三四象限,当时,一次函数的图象过一二四象限,故答案选B.9、B【解析】先由运算的定义,写出35=25,47=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b代入22求出值【详解】由规定的运算,35=3a+5b+c=25,4a+7b+c=28所以 解这个方程组,得所以22=a+b+c=-35-2c+24+c+c=-2故选B
15、【点睛】本题考查了新运算、三元一次方程组的解法解决本题的关键是根据新运算的意义,正确的写出35=25,47=28,2210、B【解析】分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.详解:因为-的相反数为所以-的绝对值为.故选:B点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.11、C【解析】根据分式和二次根式有意义的条件进行解答【详解】 解:依题意得:x21且x1解得x1故选C【点睛】考查了分式有意义的条件和二次根式有意义的条件解题时,注意分母不等于零且被开方数是非负数12、B【解
16、析】根据题中给出的函数图像结合一次函数性质得出a0,b0,再由反比例函数图像性质得出c0,从而可判断二次函数图像开口向下,对称轴:0,即在y轴的右边,与y轴负半轴相交,从而可得答案.【详解】解:一次函数y=ax+b图像过一、二、四, a0,b0, 又反比例 函数y=图像经过二、四象限, c0, 二次函数对称轴:0, 二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键二、填空题:(本大题共6
17、个小题,每小题4分,共24分)13、A【解析】根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断OAB为等腰直角三角形,所以AOB=45,再利用PQOA可得到OPQ=45,然后轴对称的性质得PB=PB,BBPQ,所以BPQ=BPQ=45,于是得到BPy轴,则点B的坐标可表示为(-,t),于是利用PB=PB得t-2=|-|=,然后解方程可得到满足条件的t的值【详解】如图,点A坐标为(-2,2),k=-22=-4,反比例函数解析式为y=-,OB=AB=2,OAB为等腰直角三角形,AOB=45,PQOA,OPQ=45,点B和点
18、B关于直线l对称,PB=PB,BBPQ,BPQ=OPQ=45,BPB=90,BPy轴,点B的坐标为(- ,t),PB=PB,t-2=|-|=,整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),t的值为故选A【点睛】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程14、1【解析】过点D作于点H,根等腰三角形的性质求得BD的长度,继而得到,结合三角形中位线定理求得EF的长度即可【详解】解:如图,过点D作于点H,过点D作于点H,又平行线间的距离是8,点D是AB的中点,在直角中,由勾股定理知,
19、点D是AB的中点,又点E、F分别是AC、BC的中点,是的中位线,故答案是:1【点睛】考查了三角形中位线定理和平行线的性质,解题的关键是根据平行线的性质求得DH的长度15、(2,3)【解析】试题分析:利用配方法将抛物线的解析式y=x2+4x1转化为顶点式解析式y=(x2)2+3,然后求其顶点坐标为:(2,3)考点:二次函数的性质16、等【解析】根据二次函数的图象最高点是坐标原点,可以得到a0,b=0,c=0,所以解析式满足a0,b=0,c=0即可【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a0,b=0,c=0,例如:.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生
20、所学函数的深入理解、掌握程度具有积极的意义.17、1【解析】根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值【详解】:点A(1,2),B(n,2)都在抛物线y=x2-4x+m上, ,解得 或 ,点B为(1,2)或(1,2),点A(1,2),点B只能为(1,2),故n的值为1,故答案为:1【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解18、1:4【解析】两个相似三角形对应边上的高的比为14,这两个相似三角形的相似比是1:4相似三角形的周长比等于相似比,它们的周长比1:4,故答案为:1:4.【点睛】本题考查了相似三角形的性质
21、,相似三角形对应边上的高、相似三角形的周长比都等于相似比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)R,S;(,0)或(4,0);(2);m或m1【解析】(1)点A的坐标为(2,1),2+1=4,点R(0,4),S(2,2),T(2,2)中,0+4=4,2+2=4,2+2=5,点A的同族点的是R,S;故答案为R,S;点B在x轴上,点B的纵坐标为0,设B(x,0),则|x|=4,x=4,B(4,0)或(4,0);故答案为(4,0)或(4,0);(2)由题意,直线与x轴交于C(2,0),与y轴交于D(0,) 点M在线段CD上,设其坐标为(x,y),
22、则有:,且点M到x轴的距离为,点M到y轴的距离为,则点M的同族点N满足横纵坐标的绝对值之和为2即点N在右图中所示的正方形CDEF上点E的坐标为(,0),点N在直线上, 如图,设P(m,0)为圆心, 为半径的圆与直线y=x2相切,PC=2,OP=1,观察图形可知,当m1时,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m也满足条件,满足条件的m的范围:m或m120、(1);(2)【解析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案【详解】(
23、1)小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,小明选择去白鹿原游玩的概率;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率21、(1)C;(2)100【解析】(1)根据中位数的定义即可作出判断;(2)先算出样本中C等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21
24、个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;故答案为C.(2)400 =100(人)答:估计该校九年级男生跳绳成绩是等级的人数有100人.【点睛】本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.22、(1)yx2;(2)C(2,0),AOB=6,,(3)4x0或x2.【解析】(1)先把B点坐标代入代入y,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和AOB的面积SAOC+SBOC进
25、行计算;(3)观察函数图象得到当4x0或x2时,一次函数图象都在反比例函数图象下方【详解】解:B(2,4)在反比例函数y的图象上,m2(4)8,反比例函数解析式为:y,把A(4,n)代入y,得4n8,解得n2,则A点坐标为(4,2)把A(4,2),B(2,4)分别代入ykx+b,得,解得,一次函数的解析式为yx2;(2)yx2,当x20时,x2,点C的坐标为:(2,0),AOB的面积AOC的面积+COB的面积22+246;(3)由图象可知,当4x0或x2时,一次函数的值小于反比例函数的值【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意
26、数形结合思想的正确运用23、见解析【解析】(1)根据平行四边形的性质可得ABDC,OB=OD,由平行线的性质可得OBE=ODF,利用ASA判定BOEDOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EFBD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形【详解】(1)四边形ABCD是平行四边形,O是BD的中点,ABDC,OB=OD,OBE=ODF,又BOE=DOF,BOEDOF(ASA),EO=FO,四边形BEDF是平行四边形;(2)EFBD四边形BEDF是平行四边形,EF
27、BD,平行四边形BEDF是菱形【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.24、 (1)c2;(2) x1=1,x2=1【解析】(1)根据抛物线与x轴有两个交点,b2-4ac0列不等式求解即可;(2)先求出抛物线的 对称轴,再根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答【详解】(1)解:抛物线与x轴有两个交点,b24ac0,即16+8c0,解得c2;(2)解:由y=2x2+4x+c得抛物线的对称轴为直线x=1,抛物线经过点(1,0),抛物线与x轴的另一个交点为(1,0),方程2
28、x2+4x+c=0的根为x1=1,x2=1【点睛】考查了抛物线与x轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性25、(1)本次共抽查了八年级学生是150人;(2)条形统计图补充见解析;(3)108;(4)估计该市12000名七年级学生中日人均阅读时间在0.51.5小时的40000人【解析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.51小时的人数,从而作出直方图;(3)利用360乘以日人均阅读时间在11.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可【详解】(1)本
29、次共抽查了八年级学生是:3020%150人;故答案为150;(2)日人均阅读时间在0.51小时的人数是:15030451(3)人均阅读时间在11.5小时对应的圆心角度数是: 故答案为108;(4) (人),答:估计该市12000名七年级学生中日人均阅读时间在0.51.5小时的40000人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小26、 (1)560;(2)54;(3)补图见解析;(4)18000人【解析】(1)本次调查的样本容量为22440%=5
30、60(人);(2)“主动质疑”所在的扇形的圆心角的度数是:36084560=54; (3)“讲解题目”的人数是:56084168224=84(人)(4)60000=18000(人),答:在课堂中能“独立思考”的学生约有18000人.27、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励【解析】(1)设年平均增长率为x,根据“2015年投入资金(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和500万”列不等式求解即可【详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:10008400+(a1000)54005000000,解得:a1900,答:今年该地至少有1900户享受到优先搬迁租房奖励考点:一元二次方程的应用;一元一次不等式的应用.