《扬州梅岭中学2022-2023学年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《扬州梅岭中学2022-2023学年中考适应性考试数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,RtABC中,C=90,A=35,点D在边BC上,BD=2CD把ABC绕着点D逆时针旋转m(0m180)度后,如果点B恰好落在初始RtABC的边上,那么m=()A35B60C70D70或1202如图:A、B、C、D四点在一条直线上,若ABCD,下列各式表示线段AC错误的是( )AACADCDBACAB+BCCACBDABDACADAB3的相反数是()A8B8CD4在数轴上表示不等式组的解集,正确的是()ABCD5如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为( )米ABCD6如果一个正多边形内角和等于1080,那么这个正多
3、边形的每一个外角等于()ABCD7为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)2530405060户数12421A极差是3B众数是4C中位数40D平均数是20.58如图,PA切O于点A,PO交O于点B,点C是O优弧弧AB上一点,连接AC、BC,如果P=C,O的半径为1,则劣弧弧AB的长为()ABCD9计算 的结果是( )Aa2B-a2Ca4D-a410已知抛物线yx2+3向左平移2个单位,那么平移后的抛物线表达式是()Ay(x+2)2+3 By(x2)2+3 Cyx2+1 Dyx2+5二、填空题(共7小题,
4、每小题3分,满分21分)11若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 12如图,正方形ABCD中,M为BC上一点,MEAM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_.13如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_m14如图,AC是以AB为直径的O的弦,点D是O上的一点,过点D作O的切线交直线AC于点E,AD平分BAE,若AB=10,DE=3,则AE的长为_15已知线段a4,线段b9,则a,b的比例中项是_16已知x1,x2是方程x2-3x-1=0的两根,则=_17如图,将的边绕着点顺
5、时针旋转得到,边AC绕着点A逆时针旋转得到,联结当时,我们称是的“双旋三角形”如果等边的边长为a,那么它的“双旋三角形”的面积是_(用含a的代数式表示)三、解答题(共7小题,满分69分)18(10分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项)并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1
6、名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率19(5分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.20(8分)如图,AB为O的直径,C为O上一点,ABC的平分线交O于点D,DEBC于点E试判断DE与O的位置关系,并说明理由;过点D作DFAB于点F,若BE=3,DF=3,求图中阴影部分的面积21(10分)定义:如果把一条抛物线绕它的顶点旋转180得到的抛物线我们称为原抛物线的“孪生抛物线”(1)求抛物线yx22x的“孪生抛物线”的表达式;(2)若抛物线yx22x+c的顶点为
7、D,与y轴交于点C,其“孪生抛物线”与y轴交于点C,请判断DCC的形状,并说明理由:(3)已知抛物线yx22x3与y轴交于点C,与x轴正半轴的交点为A,那么是否在其“孪生抛物线”上存在点P,在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出P点的坐标;若不存在,说明理由22(10分)春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游租车公司:按日收取固定租金80元,另外再按租车时间计费共享汽车:无固定租金,直接以租车时间(时)计费如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:(1)
8、分别求出y1、y2与x的函数表达式;(2)请你帮助小丽一家选择合算的租车方案23(12分)已知,在菱形ABCD中,ADC=60,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE(1)如图1,线段EH、CH、AE之间的数量关系是 ;(2)如图2,将DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH24(14分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,当顶点C恰好落在y轴上的点D处时,点B落在点E处(1)求这个抛物线的解析式;(2)求平移过
9、程中线段BC所扫过的面积;(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】当点B落在AB边上时,根据DB=DB1,即可解决问题,当点B落在AC上时,在RTDCB2中,根据C=90,DB2=DB=2CD可以判定CB2D=30,由此即可解决问题【详解】当点B落在AB边上时,当点B落在AC上时,在中,C=90, ,故选D.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.2、C【解析】根据线段上的等量关系逐一判断即可.【详解】A、AD-CD
10、=AC,此选项表示正确;B、AB+BC=AC,此选项表示正确;C、AB=CD,BD-AB=BD-CD,此选项表示不正确;D、AB=CD,AD-AB=AD-CD=AC,此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.3、C【解析】互为相反数的两个数是指只有符号不同的两个数,所以的相反数是,故选C4、C【解析】解不等式组,再将解集在数轴上正确表示出来即可【详解】解1x0得x1,解2x40得x2,所以不等式的解集为1x2,故选C.【点睛】本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.5、A【解析】试题
11、分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O连接OA根据垂径定理和勾股定理求解得AD=6设圆的半径是r, 根据勾股定理, 得r2=36+(r4)2,解得r=6.5考点:垂径定理的应用6、A【解析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360,即可求得答案【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,这个正多边形的每一个外角等于:3608=45故选A【点睛】此题考查了多边形的内角和与外角和的知识注意掌握多边形内角和定理:(n-2)180,外角和等于3607、C【解析】极差、
12、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案【详解】解:A、这组数据的极差是:60-25=35,故本选项错误;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、把这些数从小到大排列,最中间两个数的平均数是(40+40)2=40,则中位数是40,故本选项正确;D、这组数据的平均数(25+302+404+502+60)10=40.5,故本选项错误;故选:C【点睛】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念8、A【解析】利用切线的性质得OAP=90,再利用圆周角定理得到C=O,加上P=C可计算写出O=60,然后根据弧长公
13、式计算劣弧的长【详解】解:PA切O于点A,OAPA,OAP=90,C=O,P=C,O=2P,而O+P=90,O=60,劣弧AB的长=故选:A【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径也考查了圆周角定理和弧长公式9、D【解析】直接利用同底数幂的乘法运算法则计算得出答案【详解】解:,故选D【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键10、A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线yx23向左平移2个单位可得y(x2)23,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是
14、已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.二、填空题(共7小题,每小题3分,满分21分)11、0或1【解析】分析:需要分类讨论:若m=0,则函数y=2x+1是一次函数,与x轴只有一个交点;若m0,则函数y=mx2+2x+1是二次函数,根据题意得:=44m=0,解得:m=1。当m=0或m=1时,函数y=mx2+2x+1的图象与x轴只有一个公共点。12、 【解析】由勾股定理可先求得AM,利用条件可证得ABMEMA,则可求得AE的长,进一步可求得DE【详解】详解:正方形ABCD,B=90AB=12,BM=5,AM=1MEAM,AME=90=BBAE=90,
15、BAM+MAE=MAE+E,BAM=E,ABMEMA,=,即=,AE=,DE=AEAD=12=故答案为【点睛】本题主要考查相似三角形的判定和性质,利用条件证得ABMEMA是解题的关键13、【解析】分析:首先连接AO,求出AB的长度是多少;然后求出扇形的弧长弧BC为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可详解:如图1,连接AO,AB=AC,点O是BC的中点,AOBC,又 弧BC的长为:(m),将剪下的扇形围成的圆锥的半径是:(m),圆锥的高是: 故答案为.点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键.14、1或9
16、【解析】(1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示ODOA,OADODA,AD平分BAE,OADODADAC,OD/AE,DE是圆的切线,DEOD,ODE=E=90o,四边形ODEF是矩形,OFDE,EFOD5,又OFAC,AF,AEAF+EF5+49.(2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示同(1)可得:EFOD5,OFDE3,在直角三角形AOF中,AF,AEEFAF541.15、6【解析】根据已知线段a4,b9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案【详解】解:a4,b9,设线段x是a,b的比例中项
17、, ,x2ab4936,x6,x6(舍去)故答案为6【点睛】本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答16、1【解析】试题解析:,是方程的两根,、,= =1故答案为117、.【解析】首先根据等边三角形、“双旋三角形”的定义得出A BC是顶角为150的等腰三角形,其中AB=AC=a过C作CDAB于D,根据30角所对的直角边等于斜边的一半得出CDACa,然后根据SABCABCD即可求解【详解】等边ABC的边长为a,AB=AC=a,BAC=60将ABC的边AB绕着点A顺时针旋转(090)得到AB,AB=AB=a,BAB=边AC绕着点A逆时针旋转(090)得到AC,AC=AC
18、=a,CAC=,BAC=BAB+BAC+CAC=+60+=60+90=150如图,过C作CDAB于D,则D=90,DAC=30,CDACa,SABCABCDaaa1故答案为:a1【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了含30角的直角三角形的性质,等边三角形的性质以及三角形的面积三、解答题(共7小题,满分69分)18、(1)50;(2)240;(3).【解析】用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看
19、电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【详解】解:(1);(2)样本中喜爱看电视的人数为(人,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率【点睛】本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.19、甲建筑物的高度约为,乙建筑物的高度约为.【解析】分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三
20、角形,应利用其公共边构造关系式,进而可求出答案详解:如图,过点作,垂足为.则.由题意可知,.可得四边形为矩形.,.在中,.在中,. .答:甲建筑物的高度约为,乙建筑物的高度约为.点睛:本题考查解直角三角形的应用-仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般20、(1)DE与O相切,理由见解析;(2)阴影部分的面积为2【解析】(1)直接利用角平分线的定义结合平行线的判定与性质得出DEB=EDO=90,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案【详解】(1)DE与O相切,理由:连接DO,DO=BO,ODB=OBD,ABC的平分线交O于点D,E
21、BD=DBO,EBD=BDO,DOBE,DEBC,DEB=EDO=90,DE与O相切;(2)ABC的平分线交O于点D,DEBE,DFAB,DE=DF=3,BE=3,BD=6,sinDBF=,DBA=30,DOF=60,sin60=,DO=2,则FO=,故图中阴影部分的面积为:【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键21、(1)y=-(x-1)=-x+2x-2;(2)等腰Rt,(3)P1(3,-8),P2(-3,-20).【解析】(1)当抛物线绕其顶点旋转180后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;(2)
22、可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C,由点的坐标可知DCC是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标【详解】(1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180后抛物线的顶点坐标不变,只是开口方向相反,则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;(2)DCC是等腰直角三角形,理由如下:抛物线y=x2-2x+c=(x-1)2+c-1,抛物线顶点
23、为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C的坐标为(0,c-2),CC=c-(c-2)=2,点D的横坐标为1,CDC=90,由对称性质可知DC=DC,DCC是等腰直角三角形;(3)抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,C(0,-3),A(3,0),y=x2-2x-3=(x-1)2-4,其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,若A、C为平行四边形的对角线,其中点坐标为(,),设P
24、(a,-a2+2a-5),A、C、P、Q为顶点的四边形为平行四边形,Q(0,a-3),化简得,a2+3a+5=0,0,方程无实数解,此时满足条件的点P不存在,若AC为平行四边形的边,点P在y轴右侧,则APCQ且AP=CQ,点C和点Q在y轴上,点P的横坐标为3,把x=3代入“孪生抛物线”的解析式y=-32+23-5=-9+6-5=-8,P1(3,-8),若AC为平行四边形的边,点P在y轴左侧,则AQCP且AQ=CP,点P的横坐标为-3,把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,P2(-3,-20)原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上
25、存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形【点睛】本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论22、(1)y1=kx+80,y2=30x;(2)见解析【解析】(1)设y1=kx+80,将(2,110)代入求解即可;设y2=mx,将(5,150)代入求解即可;(2)分y1=y2,y1y2,y1y2三种情况分析即可.【详解】解:(1)由题意,设y1=kx+80,将(2,110)代入,得110=2k+80,解得k=15,则y1与x的函数表达式为y1=15x+80;设y2=mx
26、,将(5,150)代入,得150=5m,解得m=30,则y2与x的函数表达式为y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1y2得,15x+8030x,解得x;由y1y2得,15x+8030x,解得x故当租车时间为小时时,两种选择一样;当租车时间大于小时时,选择租车公司合算;当租车时间小于小时时,选择共享汽车合算【点睛】本题考查了一次函数的应用及分类讨论的数学思想,解答本题的关键是掌握待定系数法求函数解析式的方法.23、 (1) EH2+CH2=AE2;(2)见解析.【解析】分析:(1)如图1,过E作EMAD于M,由四边形ABCD是菱形,得到AD=CD,ADE=CD
27、E,通过DMEDHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;(2)如图2,根据菱形的性质得到BDC=BDA=30,DA=DC,在CH上截取HG,使HG=EH,推出DEG是等边三角形,由等边三角形的性质得到EDG=60,推出DAEDCG,根据全等三角形的性质即可得到结论详解:(1)EH2+CH2=AE2,如图1,过E作EMAD于M,四边形ABCD是菱形,AD=CD,ADE=CDE,EHCD,DME=DHE=90,在DME与DHE中, ,DMEDHE,EM=EH,DM=DH,AM=CH,在RtAME中,AE2=AM2+EM2,AE2=EH
28、2+CH2;故答案为:EH2+CH2=AE2;(2)如图2,菱形ABCD,ADC=60,BDC=BDA=30,DA=DC,EHCD,DEH=60,在CH上截取HG,使HG=EH,DHEG,ED=DG,又DEG=60,DEG是等边三角形,EDG=60,EDG=ADC=60,EDGADG=ADCADG,ADE=CDG,在DAE与DCG中, ,DAEDCG,AE=GC,CH=CG+GH,CH=AE+EH点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线24、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0
29、),F1(,0),F4(,0).【解析】分析:(1)根据对称轴方程求得b=4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可; (2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到: (1)联结CE分类讨论:(i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,利用勾股定理求得a的值; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答详解:(1)顶点C在直线x=2上,b=4a 将A(1,0
30、)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=4,抛物线的解析式为y=x24x+1 (2)过点C作CMx轴,CNy轴,垂足分别为M、N y=x24x+1(x2)21,C(2,1) CM=MA=1,MAC=45,ODA=45,OD=OA=1 抛物线y=x24x+1与y轴交于点B,B(0,1),BD=2 抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积, (1)联结CE 四边形BCDE是平行四边形,点O是对角线CE与BD的交点,即 (i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,即 a2=(a2)2+5,解得: ,点 同理,得点; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、 综上所述:满足条件的点有), 点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键