《贵州省黔南州重点达标名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《贵州省黔南州重点达标名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列运算正确的是()A(a2)5=a7 B(x1)2=x21C3a2b3ab2=3 Da2a4=a62下列各数中,无理数是()A0BCD3已知反比例函数,下列结论不正确的是()A图象经过点(2,1)B图象在第二、四象限C当x0时,y
2、随着x的增大而增大D当x1时,y24某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)383940414243数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A平均数B中位数C众数D方差5今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )Ax(x-60)=1600Bx(x+60)=1600C60(x+60)=1600D60(x-6
3、0)=16006计算的结果为()ABCD7下列各运算中,计算正确的是( )ABCD8如图,O为直线 AB上一点,OE平分BOC,ODOE 于点 O,若BOC=80,则AOD的度数是( )A70B50C40D359二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()ABCD10如图,已知直线AB、CD被直线AC所截,ABCD,E是平面内任意一点(点E不在直线AB、CD、AC上),设BAE=,DCE=下列各式:+,360,AEC的度数可能是()ABCD二、填空题(共7小题,每小题3分,满分21分)11对于实
4、数a,b,定义运算“*”:a*b=,例如:因为42,所以4*2=4242=8,则(3)*(2)=_.12如图,在RtABC中,ACB=90,点D、E、F分别是AB、AC、BC的中点,若CD=5,则EF的长为_13在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1则这位选手五次射击环数的方差为 14直角三角形的两条直角边长为6,8,那么斜边上的中线长是_15如图,在等腰直角三角形ABC中,C=90,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_(结果保留)16如图,等腰ABC中,AB=AC,DBC=15,AB的垂直平分线MN
5、交AC于点D,则A的度数是 17如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC若B=56,C=45,则游客中心A到观景长廊BC的距离AD的长约为_米(sin560.8,tan561.5)三、解答题(共7小题,满分69分)18(10分)(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F(1)求证:四边形BDFC是平行四边形;(2)若BCD是等腰三角形,求四边形BDFC的面积19(5分)某校有3000名学生为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方
6、式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图种类ABCDEF上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:参与本次问卷调查的学生共有_人,其中选择B类的人数有_人在扇形统计图中,求E类对应的扇形圆心角的度数,并补全条形统计图若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数20(8分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念
7、品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元设小王按原计划购买纪念品 x 个(1)求 x 的范围;(2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?21(10分)解不等式组: .22(10分)如图,已知反比例函数y的图象与一次函数yx+b的图象交于点A(1,4),点B(4,n)求n和b的值;求OAB的面积;直接写出一次函数值大于反比例函数值的自变量x的取值范围23(1
8、2分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m当起重臂AC长度为9m,张角HAC为118时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin280.47,cos280.88,tan280.53)24(14分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64,吊臂底部A距地面1.5m(计算结果精确到0.1m,参考数据sin640.90,cos640.44,tan642.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为 m(2)如果该吊车吊臂的最大长度AD为
9、20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(ab)2=a22ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可【详解】A、(a2)5=a10,故原题计算错误;B、(x1)2=x22x+1,故原题计算错误;C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;D、a2a4=a6,故原题计算正确;故选:D【点睛】此题
10、主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则2、D【解析】利用无理数定义判断即可.【详解】解:是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.3、D【解析】A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B选项:因为-20,图象在第二、四象限,故本选项正确;C选项:当x0,且k0,y随x的增大而增大,故本选项正确;D选项:当x0时,y0,故本选项错误故选D4、B【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数故选:C点睛:此
11、题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用5、A【解析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x60)米,根据长方形的面积计算法则列出方程考点:一元二次方程的应用6、A【解析】根据分式的运算法则即可【详解】解:原式=,故选A.【点睛】本题主要考查分式的运算。7、D【解析】利用同底数幂的除法法则、同底数幂的乘法法则、幂的乘方法则以及完全平方公式即可判断【详解】A、,该选项错误;B、,该选项错误;C、,该选项错误;D、,该选项
12、正确;故选:D【点睛】本题考查了同底数幂的乘法、除法法则,幂的乘方法则以及完全平方公式,正确理解法则是关键8、B【解析】分析:由OE是BOC的平分线得COE=40,由ODOE得DOC=50,从而可求出AOD的度数.详解:OE是BOC的平分线,BOC=80,COE=BOC=80=40,ODOEDOE=90,DOC=DOE-COE=90-40=50,AOD=180-BOC-DOC=180-80-50=50.故选B.点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线性质:若OC是AOB的平分线则AOC=BOC=AOB或AOB=2AOC=2BOC9、C
13、【解析】试题分析:二次函数图象开口方向向下,a0,对称轴为直线0,b0,与y轴的正半轴相交,c0,的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合故选C考点:1二次函数的图象;2一次函数的图象;3反比例函数的图象10、D【解析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由ABCD,可得AOC=DCE1=AOC=BAE1+AE1C,AE1C=-过点E2作AB的平行线,由ABCD,可得1=BAE2=,2=DCE2=AE2C=+由ABCD,可得BOE3=DCE3=BAE3=BOE3+AE
14、3C,AE3C=-由ABCD,可得BAE4+AE4C+DCE4=360,AE4C=360-AEC的度数可能是+,-,360,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.二、填空题(共7小题,每小题3分,满分21分)11、-1【解析】解:-3-2,(-3)*(-2)=(-3)-(-2)=-1故答案为-112、5【解析】已知CD是RtABC斜边AB的中线,那么AB=2CD;EF是ABC的中位线,则EF应等于AB的一半【详解】ABC是直角三角形,CD是斜边的中线,CD= AB,又EF是ABC的中位线,AB=2CD=25=10,EF=10=5.故答案为5.【点睛
15、】本题主要考查三角形中位线定理, 直角三角形斜边上的中线,熟悉掌握是关键.13、2.【解析】试题分析:五次射击的平均成绩为=(5+7+8+6+1)=7,方差S2=(57)2+(87)2+(77)2+(67)2+(17)2=2考点:方差14、1【解析】试题分析:直角三角形的两条直角边长为6,8,由勾股定理得,斜边=10.斜边上的中线长=10=1考点:1.勾股定理;2. 直角三角形斜边上的中线性质15、4【解析】由在等腰直角三角形ABC中,C=90,AB=4,可求得直角边AC与BC的长,继而求得ABC的面积,又由扇形的面积公式求得扇形EAD和扇形FBD的面积,继而求得答案【详解】解:在等腰直角三角
16、形ABC中,C=90,AB=4,AC=BC=ABsin45=AB=2,SABC=ACBC=4,点D为AB的中点,AD=BD=AB=2,S扇形EAD=S扇形FBD=22=,S阴影=SABCS扇形EADS扇形FBD=4故答案为:4【点睛】此题考查了等腰直角三角形的性质以及扇形的面积注意S阴影=SABCS扇形EADS扇形FBD16、50【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得A=ABD,然后表示出ABC,再根据等腰三角形两底角相等可得C=ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】MN是AB的垂直平分线,AD=BD. A=ABD.DBC=1
17、5,ABC=A+15.AB=AC,C=ABC=A+15.A+A+15+A+15=180,解得A=50故答案为5017、60【解析】根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决【详解】B=56,C=45,ADB=ADC=90,BC=BD+CD=100米, BD=,CD=,+=100, 解得,AD60考点:解直角三角形的应用三、解答题(共7小题,满分69分)18、(1)见解析;(2)6或【解析】试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:BD=BC,BD=CD
18、,BC=CD,分别求四边形的面积试题解析:(1)证明:A=ABC=90AFBCCBE=DFE,BCE=FDEE是边CD的中点CE=DEBCEFDE(AAS)BE=EF四边形BDFC是平行四边形(2)若BCD是等腰三角形若BD=DC在RtABD中,AB=四边形BDFC的面积为S=3=6;若BD=DC过D作BC的垂线,则垂足为BC得中点,不可能;若BC=DC过D作DGBC,垂足为G在RtCDG中,DG=四边形BDFC的面积为S=考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积19、 (1)450、63; 36,图见解析; (3)2460 人【解析】(1)根据“骑电动车”上下的人数除以所占
19、的百分比,即可得到调查学生数;用调查学生数乘以选择类的人数所占的百分比,即可求出选择类的人数.(2)求出类的百分比,乘以即可求出类对应的扇形圆心角的度数;由总学生数求出选择公共交通的人数,补全统计图即可;(3)由总人数乘以“绿色出行”的百分比,即可得到结果【详解】(1) 参与本次问卷调查的学生共有:(人);选择类的人数有: 故答案为450、63;(2)类所占的百分比为: 类对应的扇形圆心角的度数为: 选择类的人数为:(人).补全条形统计图为:(3) 估计该校每天“绿色出行”的学生人数为3000(1-14%-4%)=2460 人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从
20、不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20、(1)0x200,且 x是整数(2)175【解析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果【详解】(1)根据题意得:0x200,且x为整数;(2)设小王原计划购买x个纪念品,根据题意得:,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品【点睛】此题考查了分式方程的应用,弄清
21、题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键21、x2.【解析】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:,由得:x3,由得:x2,不等式组的解集为:x2.22、(1)-1;(2);(3)x1或4x0. 【解析】(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线yx+3与y轴的交点为C,由SAOB=SAOC+SBOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.【详解】
22、(1)把A点(1,4)分别代入反比例函数y,一次函数yx+b,得k14,1+b4,解得k4,b3,点B(4,n)也在反比例函数y的图象上,n1;(2)如图,设直线yx+3与y轴的交点为C,当x0时,y3,C(0,3),SAOBSAOC+SBOC31+347.5,(3)B(4,1),A(1,4),根据图象可知:当x1或4x0时,一次函数值大于反比例函数值【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y中k的几何意义,这里体现了数形结合的思想23、操作平台C离地面的高度为7.6m【解析】分析:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,则EF=AH=
23、3.4m,HAF=90,再计算出CAF=28,则在RtACF中利用正弦可计算出CF,然后计算CF+EF即可详解:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,EF=AH=3.4m,HAF=90,CAF=CAH-HAF=118-90=28,在RtACF中,sinCAF=,CF=9sin28=90.47=4.23,CE=CF+EF=4.23+3.47.6(m),答:操作平台C离地面的高度为7.6m点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算24、(1)11.4;
24、(2)19.5m.【解析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH地面于H,利用直角三角形的性质和三角函数解答即可【详解】解:(1)在RtABC中,BAC=64,AC=5m,AB=50.44 11.4 (m);故答案为:11.4;(2)过点D作DH地面于H,交水平线于点E,在RtADE中,AD=20m,DAE=64,EH=1.5m,DE=sin64AD200.918(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m【点睛】本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形.