《2022-2023学年河南省洛阳市东方二中学中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年河南省洛阳市东方二中学中考数学模试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A这10名同学体育成绩的中位数为38分B这10名同学体育成绩的平均数为38分C这10名同学体育成绩的众数为39分D这10名同学体育成绩的方差为22下列计算正确的是()A3a2a1Ba2+a5a7C(ab)3ab3Da2a4a63在实数,0,4中,最大的是()AB0CD44已知关于x的一元二次方程有两个相等的实根,则k的值为( )ABC2或3D或5剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是(
3、)ABCD6如图,O的直径AB的长为10,弦AC长为6,ACB的平分线交O于D,则CD长为( )A7BCD97长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )A205万BCD8若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )A矩形B菱形C对角线互相垂直的四边形D对角线相等的四边形9方程有两个实数根,则k的取值范围是( )Ak1Bk1Ck1Dk110若关于 x 的一元一次不等式组 无解,则 a 的取值范围是( )Aa3Ba3Ca3Da3
4、二、填空题(本大题共6个小题,每小题3分,共18分)11如图,以长为18的线段AB为直径的O交ABC的边BC于点D,点E在AC上,直线DE与O相切于点D已知CDE=20,则的长为_12如图,五边形是正五边形,若,则_13如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,则劣弧AB 的长为 .(结果保留)14如图,D、E分别是ABC的边AB、BC上的点,DEAC,若SBDE:SCDE=1:3,则BE:BC的值为_15把两个同样大小的含45角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上若AB=,则CD=_1
5、6如图,正比例函数y=kx(k0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则ABC的面积等于_三、解答题(共8题,共72分)17(8分)已知一次函数yx+1与抛物线yx2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1(1)写出抛物线的函数表达式;(2)判断ABC的形状,并证明你的结论;(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由18(8分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件
6、,共需95元(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式请您确定当购买A种奖品多少件时,费用W的值最少19(8分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解只听说过不了解频数40120364频率0.2m0.180.02 (1)本次问卷调查取
7、样的样本容量为 ,表中的m值为 ;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?20(8分)4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.21(8分)如图,已知二次函数的图象经过,两点求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,求的面积22(10分)如图,以AD为
8、直径的O交AB于C点,BD的延长线交O于E点,连CE交AD于F点,若ACBC(1)求证:;(2)若,求tanCED的值23(12分)如图,点A、B、C、D在同一条直线上,CEDF,EC=BD,AC=FD,求证:AE=FB24如图,港口B位于港口A的南偏东37方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45方向上,这时,E处距离港口A有多远?(参考数据:sin 370.60,cos 370.80,tan 370.75)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:10名学
9、生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数=38.4方差=(3638.4)2+2(3738.4)2+(3838.4)2+4(3938.4)2+2(4038.4)2=1.64;选项A,B、D错误;故选C考点:方差;加权平均数;中位数;众数2、D【解析】根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.【详解】3a2aa,选项A不正确;a2+a5a7,选项B不正确;(ab)3a3b3,选项C不正确;a2a4a6,选项D正确故选D【点睛】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用
10、法则是解决问题的关键.3、C【解析】根据实数的大小比较即可得到答案.【详解】解:161725,45,04,故最大的是,故答案选C.【点睛】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.4、A【解析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论【详解】方程有两个相等的实根,=k2-423=k2-24=0,解得:k=故选A【点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键5、D【解析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,
11、那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义6、B【解析】作DFCA,交CA的延长线于点F,作DGCB于点G,连接DA,DB由CD平分ACB,根据角平分线的性质得出DF=DG,由HL证明AFDBGD,CDFCDG,得出CF=7,又CDF是等腰直角三角形,从而求出CD=【详解】解:作DFCA,垂足F在CA的延长线上,作DGCB于点G,连接DA,DBCD平分
12、ACB,ACD=BCDDF=DG,弧AD=弧BD,DA=DBAFD=BGD=90,AFDBGD,AF=BG易证CDFCDG,CF=CGAC=6,BC=8,AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)CF=7,CDF是等腰直角三角形,(这里由CFDG是正方形也可得)CD=故选B7、C【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5106,故选C【点睛】本题考查科学记数法的表示方法科学记数
13、法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值8、C【解析】【分析】如图,根据三角形的中位线定理得到EHFG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案【点睛】如图,E,F,G,H分别是边AD,DC,CB,AB的中点,EH=AC,EHAC,FG=AC,FGAC,EF=BD,EHFG,EH=FG,四边形EFGH是平行四边形,假设AC=BD,EH=AC,EF=BD,则EF=EH,平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D【点睛】本题考查了中点
14、四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键9、D【解析】当k=1时,原方程不成立,故k1,当k1时,方程为一元二次方程此方程有两个实数根,解得:k1综上k的取值范围是k1故选D10、A【解析】先求出各不等式的解集,再与已知解集相比较求出 a 的取值范围【详解】由 xa0 得,xa;由 1x12(x+1)得,x1,此不等式组的解集是空集,a1 故选:A【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11
15、、7【解析】连接OD,由切线的性质和已知条件可求出AOD的度数,再根据弧长公式即可求出的长【详解】连接OD,直线DE与O相切于点D,EDO=90,CDE=20,ODB=180-90-20=70,OD=OB,ODB=OBD=70,AOD=140,的长=7,故答案为:7【点睛】本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出AOD的度数是解题的关键12、72【解析】分析:延长AB交于点F,根据得到2=3,根据五边形是正五边形得到FBC=72,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,2=3,五边形是正五边形,ABC=108,FBC=72,
16、1-2=1-3=FBC=72故答案为:72.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.13、8.【解析】试题分析: 因为AB为切线,P为切点,劣弧AB所对圆心角考点: 勾股定理;垂径定理;弧长公式.14、1:4【解析】由SBDE:SCDE=1:3,得到,于是得到【详解】解: 两个三角形同高,底边之比等于面积比. 故答案为【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键15、 【解析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论【详解】如图,过点A作AF
17、BC于F,在RtABC中,B=45,BC=AB=2,BF=AF=AB=1,两个同样大小的含45角的三角尺,AD=BC=2,在RtADF中,根据勾股定理得,DF=CD=BF+DF-BC=1+-2=-1,故答案为-1【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键16、1【解析】根据反比例函数的性质可判断点A与点B关于原点对称,则SBOC=SAOC,再利用反比例函数k的几何意义得到SAOC=3,则易得SABC=1【详解】双曲线y=与正比例函数y=kx的图象交于A,B两点,点A与点B关于原点对称,SBOC=SAOC,SAOC=1=3,SABC=2SAOC=1故答案为
18、1三、解答题(共8题,共72分)17、(1)yx27x+1;(2)ABC为直角三角形理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,7),(0,13)【解析】(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;(2)先利用抛物线解析式确定C(1,5),作AMy轴于M,CNy轴于N,如图,证明ABM和BNC都是等腰直角三角形得到MBA45,NBC45,AB8 ,BN1,从而得到ABC90,所以ABC为直角三角形;(3)利用勾股定理计算出AC10 ,根据直角三角形内切圆半径的计算公式得到RtABC的内切圆的半径2 ,设ABC的内心为I,过A作AI的垂
19、线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BIy轴,PQ为ABC的外角平分线,易得y轴为ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI24,则I(4,1),接着利用待定系数法求出直线AI的解析式为y2x7,直线AP的解析式为yx+13,然后分别求出P、Q、G的坐标即可【详解】解:(1)把A(m,9)代入yx+1得m+19,解得m8,则A(8,9),把A(8,9),B(0,1)代入yx2+bx+c得,解得,抛物线解析式为yx27x+1;故答案为yx27x+1;(2)ABC为直角三角形理由如下:当x1时,yx2
20、7x+13142+15,则C(1,5),作AMy轴于M,CNy轴于N,如图,B(0,1),A(8,9),C(1,5),BMAM8,BNCN1,ABM和BNC都是等腰直角三角形,MBA45,NBC45,AB8,BN1,ABC90,ABC为直角三角形;(3)AB8,BN1,AC10,RtABC的内切圆的半径,设ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,I为ABC的内心,AI、BI为角平分线,BIy轴,而AIPQ,PQ为ABC的外角平分线,易得y轴为ABC的外角平分线,点I、P、Q、G为ABC的内角平分线或外角平分线的交点,它们到直线AB、BC、AC距离相等
21、,BI24,而BIy轴,I(4,1),设直线AI的解析式为ykx+n,则,解得,直线AI的解析式为y2x7,当x0时,y2x77,则G(0,7);设直线AP的解析式为yx+p,把A(8,9)代入得4+n9,解得n13,直线AP的解析式为yx+13,当y1时,x+131,则P(24,1)当x0时,yx+1313,则Q(0,13),综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,7),(0,13)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键18、(1)A、B两种奖
22、品的单价各是10元、15元;(2)W(元)与m(件)之间的函数关系式是W=5m+1,当购买A种奖品75件时,费用W的值最少【解析】(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意可以列出相应的方程组,从而可以求得A、B两种奖品的单价各是多少元;(2)根据题意可以得到W(元)与m(件)之间的函数关系式,然后根据A种奖品的数量不大于B种奖品数量的3倍,可以求得m的取值范围,再根据一次函数的性质即可解答本题【详解】(1)设A种奖品的单价是x元、B种奖品的单价是y元,根据题意得:解得:答:A种奖品的单价是10元、B种奖品的单价是15元(2)由题意可得:W=10m+15(100m)=5m+1
23、A种奖品的数量不大于B种奖品数量的3倍,m3(100m),解得:m75当m=75时,W取得最小值,此时W=575+1=2答:W(元)与m(件)之间的函数关系式是W=5m+1,当购买A种奖品75件时,费用W的值最少【点睛】本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答19、 (1)200;0.6(2)非常了解20%,比较了解60%; 72;(3) 900人【解析】(1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率
24、即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.【详解】解:(1) 本次问卷调查取样的样本容量为400.2=200;m=1-0.2-0.18-0.02=0.6(2)非常了解20%,比较了解60%;非常了解的圆心角度数:36020%=72(3)150060%=900(人)答:“比较了解”垃圾分类知识的人数约为900人.【点睛】此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.20、今年妹妹6岁,哥哥10岁【解析】试题分析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论试
25、题解析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据题意得: 解得: 答:今年妹妹6岁,哥哥10岁考点:二元一次方程组的应用21、见解析【解析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值【详解】(1)把,代入得,解得.这个二次函数解析式为.(2)抛物线对称轴为直线,的坐标为,.【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式22、(1)见解析;(2)tanCED【解析】(1)欲证明,只要证明即可;(2)由,可得,设FO2a,OC3
26、a,则DFa,DE1.5a,ADDB6a,由,可得BDBEBCBA,设ACBCx,则有,由此求出AC、CD即可解决问题.【详解】(1)证明:如下图,连接AE,AD是直径,DCAB,ACCB,DADB,CDACDB,BDCEAC,AECADC,EACAEC,;(2)解:如下图,连接OC,AOOD,ACCB,OCBD,设FO2a,OC3a,则DFa,DE1.5a,ADDB6a,BADBEC,BB,BDBEBCBA,设ACBCx,则有,.【点睛】本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.23、见解析【解析】根据C
27、EDF,可得ECA=FDB,再利用SAS证明ACEFDB,得出对应边相等即可【详解】解:CEDFECA=FDB,在ECA和FDB中 ECAFDB,AE=FB【点睛】本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键24、35km【解析】试题分析:如图作CHAD于H设CH=xkm,在RtACH中,可得AH=,在RtCEH中,可得CH=EH=x,由CHBD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题试题解析:如图,作CHAD于H设CH=xkm,在RtACH中,A=37,tan37=,AH=,在RtCEH中,CEH=45,CH=EH=x,CHAD,BDAD,CHBD,AC=CB,AH=HD,=x+5,x=15,AE=AH+HE=+1535km,E处距离港口A有35km