《2022-2023学年福建省建阳市中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年福建省建阳市中考数学全真模拟试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1我市连续7天的最高气温为:28,27,30,33,30,30,32,这组数据的平均数和众数分别是( )A28,30B30,28C31,30D30,302已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( )A6B
2、7C8D93下列命题是真命题的是()A如果a+b0,那么ab0B的平方根是4C有公共顶点的两个角是对顶角D等腰三角形两底角相等4古希腊著名的毕达哥拉斯学派把1,3,6,10这样的数称为“三角形数”,而把1,4,9,16这样的数称为“正方形数”从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和下列等式中,符合这一规律的是()A133+10B259+16C3615+21D4918+315如图,在ABC中,DEBC,ADEEFC,ADBD53,CF6,则DE的长为( )A6B8C10D126如图,四边形ABCD内接于O,若四边形ABCO是平行四边形,则ADC的大小为( )
3、ABCD7已知圆心在原点O,半径为5的O,则点P(-3,4)与O的位置关系是( )A在O内 B在O上C在O外 D不能确定8下列事件中,必然事件是()A若ab=0,则a=0 B若|a|=4,则a=4C一个多边形的内角和为1000D若两直线被第三条直线所截,则同位角相等9已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;在这样连续6次旋转的过程中,点B,O间的距离不可能是()A0B0.8C2.
4、5D3.410计算(5)(3)的结果等于()A8 B8 C2 D2二、填空题(共7小题,每小题3分,满分21分)11如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点若DE=1,则DF的长为_12已知且,则=_13桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由_个这样的正方体组成.14关于x的方程kx2(2k+1)x+k+2=0有实数根,则k的取值范围是_15已知直线y=kx(k0)经过点(12,5),将直线向上平移m(m0)个单位,若平移后得到的直线与半径为6的O相交(点O为坐标原点),则m的取值范围为_16鼓励科
5、技创新、技术发明,北京市20122017年专利授权量如图所示根据统计图中提供信息,预估2018年北京市专利授权量约_件,你的预估理由是_17在实数范围内分解因式: =_三、解答题(共7小题,满分69分)18(10分)如图,在RtABC中,C=90,A=30,AB=8,点P从点A出发,沿折线ABBC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止设点P运动的时间为t秒(1)求线段AQ的长;(用含t的代数式表示)(2)当点P在AB边上运动时,求PQ与ABC的一边
6、垂直时t的值;(3)设APQ的面积为S,求S与t的函数关系式;(4)当APQ是以PQ为腰的等腰三角形时,直接写出t的值19(5分)如图,ABC中,AB=AC,以AB为直径的O与BC相交于点D,与CA的延长线相交于点E,过点D作DFAC于点F(1)试说明DF是O的切线;(2)若AC=3AE,求tanC20(8分)先化简,再求值:,其中x521(10分)清朝数学家梅文鼎的方程论中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相
7、当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?22(10分)如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE求证:DE是O的切线;若AE=6,D=30,求图中阴影部分的面积23(12分)先化简,再求值:(),其中x的值从不等式组的整数解中选取24(14分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃
8、圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:数据28,27,30,33,30,30,32的平均数是(28+27+30+33+30+30+32)7=30,30出现了3次,出现的次数最多,则众数是30;故选D考点:众数;算术平均数2、A【解析】试题分析:根据多边形的外角和是310,即可求得多边形的内角的度数为720,依据多边形的内角和公式列方程即可得(n2)180=720,解得:n=1故选A考点:多边形的内角和定理以
9、及多边形的外角和定理3、D【解析】解:A、如果a+b=0,那么a=b=0,或a=b,错误,为假命题;B、=4的平方根是2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D4、C【解析】本题考查探究、归纳的数学思想方法题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值【详解】A中13不是“正方形数”;选项B、D中等
10、式右侧并不是两个相邻“三角形数”之和故选:C【点睛】此题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的5、C【解析】DEBC,ADE=B,AED=C,又ADE=EFC,B=EFC,ADEEFC,BDEF,四边形BFED是平行四边形,BD=EF,解得:DE=10.故选C.6、C【解析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知B=AOC,根据圆内接四边形的对角互补可知B+D=180,根据圆周角定理可知D=AOC,因此B+D=AOC+AOC=180,解得AOC=120,因此ADC=60故选C【点睛】该
11、题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用7、B.【解析】试题解析:OP=5,根据点到圆心的距离等于半径,则知点在圆上故选B考点:1.点与圆的位置关系;2.坐标与图形性质8、B【解析】直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案【详解】解:A、若ab=0,则a=0,是随机事件,故此选项错误;B、若|a|=4,则a=4,是必然事件,故此选项正确;C、一个多边形的内角和为1000,是不可能事件,故此选项错误;D、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;故选:B【点睛】此题主要考查了事件的判别,正确把握各命题的正确性是解题关键9、
12、D【解析】如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=,可得0d,即0d3.1,由此即可判断;【详解】如图,点O的运动轨迹是图在黄线,作CHBD于点H,六边形ABCDE是正六边形,BCD=120,CBH=30,BH=cos30 BC=,BD=.DK=,BK=,点B,O间的距离d的最小值为0,最大值为线段BK=,0d,即0d3.1,故点B,O间的距离不可能是3.4,故选:D【点睛】本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键10、C【解析】分析:减去一个数,等于加上这个数的相
13、反数 依此计算即可求解详解:(-5)-(-3)=-1故选:C点睛:考查了有理数的减法,方法指引:在进行减法运算时,首先弄清减数的符号; 将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数)二、填空题(共7小题,每小题3分,满分21分)11、1.1【解析】求出EC,根据菱形的性质得出ADBC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可【详解】DE=1,DC=3,EC=3-1=2,四边形ABCD是菱形,ADBC,DEFCEB,DF=1.1,故答案为1.1【点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明
14、DEFCEB,然后根据相似三角形的性质可求解.12、【解析】分析:根据相似三角形的面积比等于相似比的平方求解即可详解:ABCABC,SABC:SABC=AB2:AB2=1:2,AB:AB=1:点睛:本题的关键是理解相似三角形的面积比等于相似比的平方13、1【解析】主视图、左视图是分别从物体正面、左面看,所得到的图形【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体故答案为114、k【解析】分k=1及k1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k1时,由1即可得出关于k的一元一次不等式,解之即可得出k的取值范围综上此题
15、得解【详解】当k=1时,原方程为-x+2=1,解得:x=2,k=1符合题意;当k1时,有=-(2k+1)2-4k(k+2)1,解得:k且k1综上:k的取值范围是k故答案为:k【点睛】本题考查了根的判别式以及一元二次方程的定义,分k=1及k1两种情况考虑是解题的关键15、0m【解析】【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答【详解】把点(12,5)代入直线y=kx得,5=12k,k=;由y=x平移m(m0)个单位后得到的直线l所对应的函数关系式为y=x+m(m0),设直线l与x轴、y轴分别交于点A
16、、B,(如图所示)当x=0时,y=m;当y=0时,x=m,A(m,0),B(0,m),即OA=m,OB=m,在RtOAB中,AB=,过点O作ODAB于D,SABO=ODAB=OAOB,OD=mm,m0,解得OD=m,由直线与圆的位置关系可知m 6,解得m,故答案为0m.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.16、113407, 北京市近两年的专利授权量平均每年增加6458.5件. 【解析】依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.【详
17、解】解:北京市近两年的专利授权量平均每年增加:(件),预估2018年北京市专利授权量约为1069486458.5113407(件),故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件【点睛】此题考查统计图的意义,解题的关键在于看懂图中数据.17、2(x+)(x-)【解析】先提取公因式2后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解【详解】2x2-6=2(x2-3)=2(x+)(x-)故答案为2(x+)(x-)【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止三、
18、解答题(共7小题,满分69分)18、(1)4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或【解析】分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC;当PQAB时;当PQAC时;分别求解即可;(3)当P在AB边上时,即0t1,作PGAC于G,或当P在边BC上时,即1t3,分别根据三角形的面积求函数的解析式即可;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,作PGAC于G,
19、则AG=GQ,列方程求解;当P在边AC上时, AQ=PQ,根据勾股定理求解.详解:(1)如图1,RtABC中,A=30,AB=8,BC=AB=4,AC=,由题意得:CQ=t,AQ=4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC,此时t=0;当PQAB时,如图2,AQ=4t,AP=8t,A=30,cos30=,t=;当PQAC时,如图3,AQ=4t,AP=8t,A=30,cos30=,t=;综上所述,当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)分两种情况:当P在AB边上时,即0t1,如图4,作PGAC于G,A
20、=30,AP=8t,AGP=90,PG=4t,SAPQ=AQPG=(4t)4t=2t2+8t;当P在边BC上时,即1t3,如图5,由题意得:PB=2(t1),PC=42(t1)=2t+6,SAPQ=AQPC=(4t)(2t+6)=t2;综上所述,S与t的函数关系式为:S=;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,如图6,AP=PQ,作PGAC于G,则AG=GQ,A=30,AP=8t,AGP=90,PG=4t,AG=4t,由AQ=2AG得:4t=8t,t=,当P在边AC上时,如图7,AQ=PQ,RtPCQ中,由勾股定理得:CQ2+CP2=PQ2,t=或(舍),综上
21、所述,t的值为或点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.19、(1)详见解析;(2)【解析】(1)连接OD,根据等边对等角得出B=ODB,B=C,得出ODB=C,证得ODAC,证得ODDF,从而证得DF是O的切线;(2)连接BE,AB是直径,AEB=90,根据勾股定理得出BE=2AE,CE=4AE,然后在RtBEC中,即可求得tanC的值【详解】(1)连接OD,OB=OD,B=ODB,AB=AC,B=C,ODB=C,ODAC,DFAC,ODDF,DF是O的切线;(
22、2)连接BE,AB是直径,AEB=90,AB=AC,AC=3AE,AB=3AE,CE=4AE,BE=,在RTBEC中,tanC=20、,-【解析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.详解: 当时,原式.点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.21、每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田亩【解析】设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,列二元一次方程组求解【详解】
23、解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩可列方程组为 解得 答:每亩山田相当于实田0.9亩,每亩场地相当于实田亩22、(1)证明见解析;(2)阴影部分的面积为【解析】(1)连接OC,先证明OAC=OCA,进而得到OCAE,于是得到OCCD,进而证明DE是O的切线;(2)分别求出OCD的面积和扇形OBC的面积,利用S阴影=SCODS扇形OBC即可得到答案【详解】解:(1)连接OC, OA=OC, OAC=OCA, AC平分BAE, OAC=CAE,OCA=CAE, OCAE, OCD=E, AEDE, E=90, OCD=90, OCCD,点C在圆O上,OC为圆O的半径, C
24、D是圆O的切线;(2)在RtAED中, D=30,AE=6, AD=2AE=12, 在RtOCD中,D=30,DO=2OC=DB+OB=DB+OC, DB=OB=OC=AD=4,DO=8,CD=SOCD=8, D=30,OCD=90,DOC=60, S扇形OBC=OC2=, S阴影=SCODS扇形OBC S阴影=8,阴影部分的面积为823、-【解析】先化简,再解不等式组确定x的值,最后代入求值即可.【详解】(),=解不等式组,可得:2x2,x=1,0,1,2,x=1,0,1时,分式无意义,x=2,原式=24、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析【解析】(1)根据
25、“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论【详解】(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+33x=550,x=50,经检验,符合题意,3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100y)个,根据题意得,意, y为正整数,y为50,51,52,共3中方案;有三种方案:温馨提示牌50个,垃圾箱50个,温馨提示牌51个,垃圾箱49个,温馨提示牌52个,垃圾箱48个,设总费用为w元W=50y+150(100y)=100y+15000,k=-100,w随y的增大而减小当y=52时,所需资金最少,最少是9800元【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键