《2022-2023学年湖北省襄阳老河口市中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖北省襄阳老河口市中考数学最后冲刺模拟试卷含解析.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列计算正确的是()A3B329C(3)2D3+|3|62已知点A、B、C是直径为6cm的O上的点,且AB=3cm,AC=3 cm,则BAC的度数为()A15B75或15C105或15D75或1053使用家用燃气灶烧开同一壶水所需的燃气量(单位:)
2、与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )ABCD4已知圆锥的侧面积为10cm2,侧面展开图的圆心角为36,则该圆锥的母线长为()A100cmBcmC10cmDcm5下列几何体中,三视图有两个相同而另一个不同的是()A(1)(2)B(2)(3)C(2)(4)D(3)(4)6下列运算正确的是()A(a3)2=a29B()1=2Cx+y=xyDx6x2=x37在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
3、ABCD8某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是( )班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A八(2)班的总分高于八(1)班B八(2)班的成绩比八(1)班稳定C两个班的最高分在八(2)班D八(2)班的成绩集中在中上游9将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )ABCD10若关于x的方程 是一元二次方程,则m的取值范围是( )A.B.CD.二、填空题(本大题共6个小题,每小题3分,共18分)11若,则_12百子回归图是由 1
4、,2,3,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四 位“19 99 12 20”标示澳门回归日期,最后一行中间两 位“23 50”标示澳门面积,同时它也是十阶幻方, 其每行 10 个数之和、每列 10 个数之和、每条对角线10 个数之和均相等,则这个和为_百 子 回 归13分解因式:a3b+2a2b2+ab3_14函数中,自变量的取值范围是_15若代数式有意义,则x的取值范围是_16已知ab=2,ab=3,则a3b2a2b2+ab3的值为_三、解答题(共8题,共72分)17(8分)先化简,再求值:,其中m2.18(8分)如图,已知一次函数y=kx+b的图象与x轴交
5、于点A,与反比例函数 (x0)的图象交于点B(2,n),过点B作BCx轴于点C,点D(33n,1)是该反比例函数图象上一点求m的值;若DBC=ABC,求一次函数y=kx+b的表达式19(8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高AB(结果保留根号).20(8分)如图,AD、BC相交于点O,ADBC,CD90求证:ACBBDA;若ABC36,求CAO度数21(8分)如图,在ABCD中,BAC=90,对角线AC,BD相交于点P,以AB为直径的O分别交BC,BD于点E,
6、Q,连接EP并延长交AD于点F(1)求证:EF是O的切线;(2)求证:=4BPQP22(10分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍具体情况如下表:甲种乙种丙种进价(元/台)120016002000售价(元/台)142018602280经预算,商场最多支出132000元用于购买这批电冰箱(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?23(12分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规
7、做出折痕所在的直线。(保留作图痕迹,不写做法)24某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的问该兴趣小组男生、女生各有多少人?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可【详解】=3,故选项A不合题意;329,故选项B不合题意;(3)2,故选项C符合题意;3+|3|3+30,故选项D不合题意故选C【点睛】本题主要考查了二次根式的定义,乘方的定义、负指数
8、幂的意义以及绝对值的定义,熟记定义是解答本题的关键2、C【解析】解:如图1AD为直径,ABD=ACD=90在RtABD中,AD=6,AB=3,则BDA=30,BAD=60在RtABD中,AD=6,AC=3,CAD=45,则BAC=105;如图2,AD为直径,ABD=ABC=90在RtABD中,AD=6,AB=3,则BDA=30,BAD=60在RtABC中,AD=6,AC=3,CAD=45,则BAC=15故选C点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用3、C【解析】根据已知三点和近似满足函数关系y=a
9、x2+bx+c(a0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41旋钮的旋转角度在36和54之间,约为41时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点4、C【解析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长【详解】设母线长为R,则圆锥的侧面积=10,R=10cm,故选C【点睛】本题考查了圆锥的计算,
10、熟练掌握扇形面积是解题的关键.5、B【解析】根据三视图的定义即可解答【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.6、B【解析】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.详解:A. (a3)2=a26a+9,故该选项错误;B. ()1=2,故该选项正确;C.x与y不是同
11、类项,不能合并,故该选项错误;D. x6x2=x6-2=x4,故该选项错误.故选B.点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.7、C【解析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形故此选项错误;B、不是轴对称图形,也不是中心对称图形故此选项错误;C、是轴对称图形,也是中心对称图形故此选项正确;D、是轴对称图形,但不是中心对称图形故此选项错误故选C【点睛】考点:1、中心对称图形;2、轴对称图形8、C【解析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数
12、得出答案【详解】A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;C选项:两个班的最高分无法判断出现在哪个班,错误;D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;故选C【点睛】考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键9、A【解析】根据二次函数的平移规律即可得出【详解】解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为故答案为:A【点睛】本题考查了二次函数的平移,
13、解题的关键是熟知二次函数的平移规律10、A【解析】根据一元二次方程的定义可得m10,再解即可【详解】由题意得:m10,解得:m1,故选A【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】=.12、505【解析】根据已知得:百子回归图是由1,2,3,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和10,代入求解即可【详解】1100的总和为: =5050,一共有10行,且每行10个数之和均相等,所以每行10个
14、数之和为:n=505010=505,故答案为505.【点睛】本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案13、ab(a+b)1【解析】a3b+1a1b1+ab3ab(a1+1ab+b1)ab(a+b)1故答案为ab(a+b)1【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键14、【解析】根据分式有意义的条件是分母不为2;分析原函数式可得关系式x12,解得答案【详解】根据题意得x12,解得:x1;故答案为:x1【点睛】本题主要考查自变量得取值范围的知识点,当
15、函数表达式是分式时,考虑分式的分母不能为215、x3【解析】由代数式有意义,得x-30,解得x3,故答案为: x3.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零.16、18【解析】要求代数式a3b2a2b2+ab3的值,而代数式a3b2a2b2+ab3恰好可以分解为两个已知条件ab,(ab)的乘积,因此可以运用整体的数学思想来解答【详解】a3b2a2b2+ab3=ab(a22ab+b2)=ab(ab)2,当ab=3,ab=2时,原式=232=18,故答案为:18.【点睛】本题考查了因式分解在
16、代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.三、解答题(共8题,共72分)17、,原式.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.【详解】原式,当m2时,原式.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18、(1)-6;(2)【解析】(1)由点B(2,n)、D(33n,1)在反比例函数(x0)的图象上可得2n=33n,即可得出答案;(2)由(1)得出B、D的坐标,作DEBC延长DE交AB于点F,证DBEFBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得【详
17、解】解:(1)点B(2,n)、D(33n,1)在反比例函数(x0)的图象上,解得:;(2)由(1)知反比例函数解析式为,n=3,点B(2,3)、D(6,1),如图,过点D作DEBC于点E,延长DE交AB于点F,在DBE和FBE中,DBE=FBE,BE=BE,BED=BEF=90,DBEFBE(ASA),DE=FE=4,点F(2,1),将点B(2,3)、F(2,1)代入y=kx+b,解得:,【点睛】本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长19、6+【解析】如下图,过点C作CFAB于点F,设AB长为x,则易得AF=x-4,在RtACF中利用的正
18、切函数可由AF把CF表达出来,在RtABE中,利用的正切函数可由AB把BE表达出来,这样结合BD=CF,DE=BD-BE即可列出关于x的方程,解方程求得x的值即可得到AB的长.【详解】解:如图,过点C作CFAB,垂足为F, 设AB=x,则AF=x-4,在RtACF中,tan=,CF=BD ,同理,RtABE中,BE=,BD-BE=DE,-=3,解得x=6+.答:树高AB为(6+)米 .【点睛】作出如图所示的辅助线,利用三角函数把CF和BE分别用含x的式子表达出来是解答本题的关键.20、(1)证明见解析(2)18【解析】(1)根据HL证明RtABCRtBAD即可;(2)利用全等三角形的性质及直角
19、三角形两锐角互余的性质求解即可【详解】(1)证明:DC90,ABC和BAD都是Rt,在RtABC和RtBAD中,RtABCRtBAD(HL);(2)RtABCRtBAD,ABCBAD36,C90,BAC54,CAOCABBAD18【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”21、(1)证明见解析;(2)证明见解析【解析】试题分析:(1)连接OE,AE,由AB是O的直径,得到AEB=AEC=90,根据四边形ABCD是平行四边形,得到PA=PC推出OEP=OAC=90,根据切线的判定定理即可得到结论;(2)由AB是O的直径
20、,得到AQB=90根据相似三角形的性质得到=PBPQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论试题解析:(1)连接OE,AE,AB是O的直径,AEB=AEC=90,四边形ABCD是平行四边形,PA=PC,PA=PC=PE,PAE=PEA,OA=OE,OAE=OEA,OEP=OAC=90,EF是O的切线;(2)AB是O的直径,AQB=90,APQBPA,=PBPQ,在AFP与CEP中,PAF=PCE,APF=CPE,PA=PC,AFPCEP,PF=PE,PA=PE=EF,=4BPQP考点:切线的判定;平行四边形的性质;相似三角形的判定与性质22、(1)商场至
21、少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台【解析】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得【详解】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(803x)台根据题意得:12002x+1600x+2000(803x)132000,解得:x14,商场至少购进乙种电冰箱1
22、4台;(2)由题意得:2x803x且x14,14x16,W=2202x+260x+280(803x)=140x+22400,W随x的增大而减小,当x=14时,W取最大值,且W最大=14014+22400=20440,此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台【点睛】本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式23、答案见解析【解析】根据轴对称的性质作出线段AC的垂直平分线即可得【详解】如图所示,直线EF即为所求【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质和线段中垂线的尺规作图24、男生有12人,女生有21人.【解析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)2-1=女生的人数,(女生的人数-1) =男生的人数,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x人,女生有y人,依题意得:,解得:答:该兴趣小组男生有12人,女生有21人【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.