《湖北省孝感孝昌县联考2022-2023学年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖北省孝感孝昌县联考2022-2023学年中考数学最后冲刺模拟试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1若(x1)01成立,则x的取值范围是()Ax1Bx1Cx0Dx12某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为()A152元B156元C160元D190元3二次函数yax2+c的图象如图所示,正比例函数yax与反比例函数y在同一坐标系中的图象可能是()ABCD4下列函数中,当x0时,y值随x值增大而减小的是()Ayx2Byx1CD5下列计算正确的是( )A(a3)2a26a9B(a3)(a3)a29C(ab)2a2b2D(ab)2a2a26已知抛物线c:y=x2+2x3,将抛物线c平移得到抛物线c,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是
3、()A将抛物线c沿x轴向右平移个单位得到抛物线cB将抛物线c沿x轴向右平移4个单位得到抛物线cC将抛物线c沿x轴向右平移个单位得到抛物线cD将抛物线c沿x轴向右平移6个单位得到抛物线c7计算 的结果是( )Aa2B-a2Ca4D-a48若是新规定的某种运算符号,设ab=b 2 -a,则-2x=6中x的值()A4B8C2D-29如图,在边长为6的菱形中, ,以点为圆心,菱形的高为半径画弧,交于点,交于点,则图中阴影部分的面积是( )ABCD10欧几里得的原本记载,形如的方程的图解法是:画,使,再在斜边上截取.则该方程的一个正根是( )A的长B的长C的长D的长11下列命题是真命题的是()A一组对边
4、平行,另一组对边相等的四边形是平行四边形B两条对角线相等的四边形是平行四边形C两组对边分别相等的四边形是平行四边形D平行四边形既是中心对称图形,又是轴对称图形12下列计算中,正确的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13比较大小:4 (填入“”或“”号)14如图,AB是O的直径,点C在O上,AE是O的切线,A为切点,连接BC并延长交AE于点D若AOC=80,则ADB的度数为( )A40 B50 C60 D2015若式子有意义,则实数x的取值范围是_.16如图,PC是O的直径,PA切O于点P,AO交O于点B;连接BC,若,则_.17一个多边形的每个内角都等于15
5、0,则这个多边形是_边形18设、是一元二次方程的两实数根,则的值为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)计算:(2)2+2018020(6分)如图,一次函数ykx+b的图象与坐标轴分别交于A、B两点,与反比例函数y的图象在第一象限的交点为C,CDx轴于D,若OB1,OD6,AOB的面积为1求一次函数与反比例函数的表达式;当x0时,比较kx+b与的大小21(6分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC直线l,BCE=71,CE=54
6、cm(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E,求EE的长(结果精确到0.1cm)(参考数据:sin710.95,cos710.33,tan712.90)22(8分)如图,分别延长ABCD的边到,使,连接EF,分别交于,连结求证:23(8分)已知,ABC中,A=68,以AB为直径的O与AC,BC的交点分别为D,E()如图,求CED的大小;()如图,当DE=BE时,求C的大小24(10分)如图1,点为正的边上一点(不与点重合),点分别在边上,且
7、.(1)求证:;(2)设,的面积为,的面积为,求(用含的式子表示);(3)如图2,若点为边的中点,求证: .图1 图225(10分)计算:(2)2+|3|2018026(12分)先化简,再求值:,其中满足.27(12分)如图1,抛物线l1:y=x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5)(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴(如图2所示),交抛物线l1于点N,
8、求点M自点A运动至点E的过程中,线段MN长度的最大值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】试题解析:由题意可知:x-10,x1故选D.2、C【解析】【分析】设进价为x元,依题意得2400.8-x=20x,解方程可得.【详解】设进价为x元,依题意得2400.8-x=20x解得x=160所以,进价为160元.故选C【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.3、C【解析】根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.【详解】解:由二次函数的图像可知a0,c0
9、,正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.4、D【解析】A、yx2,对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误B、k0,y随x增大而增大,故此选项错误C、B、k0,y随x增大而增大,故此选项错误D、y=(x0),反比例函数,k0,故在第一象限内y随x的增大而减小,故此选项正确5、B【解析】利用完全平方公式及平方差公式计算即可【详解】解:A、原式=a2-6a+9,本选项错误;B、原式=a2-9,本选项正确;C、原式=a2-2ab+b2,本选
10、项错误;D、原式=a2+2ab+b2,本选项错误,故选:B【点睛】本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键6、B【解析】抛物线C:y=x2+2x3=(x+1)24,抛物线对称轴为x=1抛物线与y轴的交点为A(0,3)则与A点以对称轴对称的点是B(2,3)若将抛物线C平移到C,并且C,C关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称则B点平移后坐标应为(4,3),因此将抛物线C向右平移4个单位故选B7、D【解析】直接利用同底数幂的乘法运算法则计算得出答案【详解】解:,故选D【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键8、C【解析】解:由
11、题意得:,x=1故选C9、B【解析】由菱形的性质得出AD=AB=6,ADC=120,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积,根据面积公式计算即可【详解】四边形ABCD是菱形,DAB=60,AD=AB=6,ADC=180-60=120,DF是菱形的高,DFAB,DF=ADsin60=6=3,阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积=63=18-9故选B【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键10、B【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求
12、得AD的长,即可发现结论.【解答】用求根公式求得: AD的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.11、C【解析】根据平行四边形的五种判定定理(平行四边形的判定方法:两组对边分别平行的四边形;两组对角分别相等的四边形;两组对边分别相等的四边形;一组对边平行且相等的四边形;对角线互相平分的四边形)和平行四边形的性质进行判断【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形故本选项错误;C、两组对边分别相等的四边形是平行四边形故本选项正确;D、平行四边形不是轴
13、对称图形,是中心对称图形故本选项错误;故选:C【点睛】考查了平行四边形的判定与性质平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法12、D【解析】根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可【详解】A、(2a)3=8a3,故本选项错误;B、a3+a2不能合并,故本选项错误;C、a8a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选D【点睛】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】试题解析:4考点
14、:实数的大小比较【详解】请在此输入详解!14、B【解析】试题分析:根据AE是O的切线,A为切点,AB是O的直径,可以先得出BAD为直角再由同弧所对的圆周角等于它所对的圆心角的一半,求出B,从而得到ADB的度数由题意得:BAD=90,B=AOC=40,ADB=90-B=50故选B考点:圆的基本性质、切线的性质15、x2且x1【解析】根据被开方数大于等于1,分母不等于1列式计算即可得解【详解】解:由题意得,且x1,解得且x1故答案为且x1【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数16、26【解析】根据圆周角定理得到AOP=2C=64,根据切线的性质定理得到APO
15、=90,根据直角三角形两锐角互余计算即可【详解】由圆周角定理得:AOP=2C=64PC是O的直径,PA切O于点P,APO=90,A=90AOP=9064=26故答案为:26【点睛】本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键17、1【解析】根据多边形的内角和定理:180(n-2)求解即可【详解】由题意可得:180(n-2)=150n,解得n=1故多边形是1边形18、27【解析】试题分析:根据一元二次方程根与系数的关系,可知+=5,=-1,因此可知=-2=25+2=27.故答案为27.点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:
16、,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1【解析】分析:首先计算乘方、零次幂和开平方,然后再计算加减即可详解:原式=4+1-6=-1点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质20、 (1) ,;(2) 当0x6时,kx+b,当x6时,kx+b【解析】(1)根据点A和点B的坐标求出一次函数的解析式,再求出C的坐标6,2),利用待定系数法求解即可求出解析式(2)由C(6,2)分析图形可知,当0x6时,kx+b,当x6时,kx+b【详解】(1)S
17、AOB OAOB1,OA2,点A的坐标是(0,2),B(1,0) yx2当x6时,y 622,C(6,2)m263y(2)由C(6,2),观察图象可知:当0x6时,kx+b,当x6时,kx+b【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标21、(1)81cm;(2)8.6cm;【解析】(1)作EMBC于点M,由EM=ECsinBCE可得答案;(2)作EHBC于点H,先根据EC=求得EC的长度,再根据EE=CECE可得答案【详解】(1)如图1,过点E作EMBC于点M由题意知BCE=71、EC=54,EM=ECsinBCE=54sin7151.3,则单车车座E到地面的高度
18、为51.3+3081cm;(2)如图2所示,过点E作EHBC于点H由题意知EH=700.85=59.5,则EC=62.6,EE=CECE=62.654=8.6(cm)【点睛】本题考查了解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答22、证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出EGD和FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案详解:证明:在ABCD中,又,又,四边形AGCH为平行四边形, 点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型解决这个问题的关键就是根据平行四边形的性
19、质得出四边形AHCG为平行四边形23、()68()56【解析】(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明CED=A即可,(2)连接AE,在RtAEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.【详解】()四边形ABED 圆内接四边形,A+DEB=180,CED+DEB=180,CED=A,A=68,CED=68()连接AEDE=BD,,DAE=EAB=CAB=34,AB是直径,AEB=90,AEC=90,C=90DAE=9034=56【点睛】本题主要考查圆
20、周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题24、(1)详见解析;(1)详见解析;(3)详见解析.【解析】(1)根据两角对应相等的两个三角形相似即可判断;(1)如图1中,分别过E,F作EGBC于G,FHBC于H,S1=BDEG=BDEG=aBEsin60=aBE,S1=CDFH=bCF,可得S1S1=abBECF,由(1)得BDECFD,即BEFC=BDCD=ab,即可推出S1S1=a1b1;(3)想办法证明DFECFD,推出,即DF1=EFFC;【详解】(1)证明:如图1中,在BDE中,BDE+DEB+B=180,又BDE+EDF+FDC=180,
21、BDE+DEB+B=BDE+EDF+FDC,EDF=B,DEB=FDC,又B=C,BDECFD(1)如图1中,分别过E,F作EGBC于G,FHBC于H,S1=BDEG=BDEG=aBEsin60=aBE,S1=CDFH=bCF,S1S1=abBECF由(1)得BDECFD,即BEFC=BDCD=ab,S1S1=a1b1(3)由(1)得BDECFD,又BD=CD,又EDF=C=60,DFECFD,即DF1=EFFC【点睛】本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的相似的条件.25、1【解析】根据乘方的意义、绝对值的性质、
22、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.【详解】原式=1+313=1【点睛】本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.26、1【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值试题解析:原式= x2x1=0,x2=x+1,则原式=1.27、(1)抛物线l2的函数表达式;y=x24x
23、1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【解析】(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CHPG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为1,4,当1x4时,点M位于点N的下方,表
24、示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;当4x1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)抛物线l1:y=x2+bx+3对称轴为x=1,x=1,b=2,抛物线l1的函数表达式为:y=x2+2x+3,当y=0时,x2+2x+3=0,解得:x1=3,x2=1,A(1,0),B(3,0),设抛物线l2的函数表达式;y=a(x1)(x+1),把D(0,1)代入得:1a=1,a=1,抛物线l2的函数表达式;y=x24x1;(2)作CHPG交直线PG于点H,设P点坐标为(1,y),由(1)可得C点坐标为(0,3),CH=1,
25、PH=|3y |,PG=|y |,AG=2,PC2=12+(3y)2=y26y+10,PA2= =y2+4,PC=PA,PA2=PC2,y26y+10=y2+4,解得y=1,P点坐标为(1,1);(3)由题意可设M(x,x24x1),MNy轴,N(x,x2+2x+3),令x2+2x+3=x24x1,可解得x=1或x=4,当1x4时,MN=(x2+2x+3)(x24x1)=2x2+6x+8=2(x)2+,显然14,当x=时,MN有最大值12.1;当4x1时,MN=(x24x1)(x2+2x+3)=2x26x8=2(x)2,显然当x时,MN随x的增大而增大,当x=1时,MN有最大值,MN=2(1)2=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【点睛】本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.