《黑龙江省齐齐哈尔市龙江县重点中学2022-2023学年中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省齐齐哈尔市龙江县重点中学2022-2023学年中考数学模拟预测题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列说法错误的是()A的相反数是2B3的倒数是CD,0,4这三个数中最小的数是02如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()ABCD3对于不等式组,下列说法正确的是()A此不等式组的正整数解为1,2,3B此不等式组的解集为C此不
2、等式组有5个整数解D此不等式组无解4一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是()A4B5C10D115抛物线y=x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x21012y04664从上表可知,下列说法错误的是A抛物线与x轴的一个交点坐标为(2,0)B抛物线与y轴的交点坐标为(0,6)C抛物线的对称轴是直线x=0D抛物线在对称轴左侧部分是上升的6从1,2,3,6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y图象上的概率是()ABCD7如图,AB为O的直径,C,D为O上的两点,若AB14,BC1则BDC的度数是()A15B30C45
3、D608甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A=B=C=D=9如图,四边形ABCD是菱形,A=60,AB=2,扇形BEF的半径为2,圆心角为60,则图中阴影部分的面积是( )ABCD10点A(1,),B(2,)在反比例函数的图象上,则,的大小关系是( )AB=CD不能确定二、填空题(本大题共6个小题,每小题3分,共18分)11在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响
4、,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度若设原计划每天修路xm,则根据题意可得方程 12新田为实现全县“脱贫摘帽”,2018年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为_13如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么AOC度数为_度14已知a,b为两个连续的整数,且ab,则ba_15大型纪录片厉害了,我的国上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军402700000用科学记数法表示是_16如图所示,点C在反比例函数的
5、图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为_三、解答题(共8题,共72分)17(8分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_人,扇形统计图中D类所对应扇形的圆心角为_度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学
6、生擅长书法,另两名擅长绘画班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率18(8分)如图,已知ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边DEB,连接AE,求证:AB平分EAC19(8分)在ABCD中,过点D作DEAB于点E,点F在CD上,CF=AE,连接BF,AF(1)求证:四边形BFDE是矩形;(2)若AF平分BAD,且AE=3,DE=4,求tanBAF的值20(8分)已知P是O外一点,PO交O于点C,OC=CP=2,弦ABOC,AOC的度数为60,连接PB求BC的长;
7、求证:PB是O的切线21(8分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?22(10分)如图,AB是O的直径,弦DE交AB于点F,O的切线BC与AD的延长线交于点C,连接AE(1)试判断AED与C的数量关系,并说明理由;(2)若AD=3,C=60,点E是半圆AB的中点,则线段AE的长为 23(12分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象同学们
8、通过列表、描点、画图象,发现它的图象特征,请你补充完整(1)函数y=+1的图象可以由我们熟悉的函数 的图象向上平移 个单位得到;(2)函数y=+1的图象与x轴、y轴交点的情况是: ;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是 24解不等式组并写出它的整数解参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:2的相反数是2,A正确;3的倒数是,B正确;(3)(5)=3+5=2,C正确;11,0,4这三个数中最小的数是11,D错误,故选D考点:1相反数;2倒数;3有理数大小比较;4有理数的减法2、C【解析】根据俯视图的概
9、念可知, 只需找到从上面看所得到的图形即可.【详解】解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.【点睛】考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上面看所得到的图形;3、A【解析】解:,解得x,解得x1,所以不等式组的解集为1x,所以不等式组的整数解为1,2,1故选A点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解)解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解4、B【解析】试题分析:(4+
10、x+3+30+33)3=7,解得:x=3,根据众数的定义可得这组数据的众数是3故选B考点:3众数;3算术平均数5、C【解析】当x=-2时,y=0,抛物线过(-2,0),抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,对称轴为x=,故C错误;当x时,y随x的增大而增大,抛物线在对称轴左侧部分是上升的,故D正确;故选C6、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y图象上的情况,再利用概率公式即可求得答案【详解】解:画树状图得:共有12种等可能的结
11、果,点(m,n)恰好在反比例函数y图象上的有:(2,3),(1,6),(3,2),(6,1),点(m,n)在函数y图象上的概率是:故选B【点睛】此题考查了列表法或树状图法求概率用到的知识点为:概率所求情况数与总情况数之比7、B【解析】只要证明OCB是等边三角形,可得CDB=COB即可解决问题.【详解】如图,连接OC,AB=14,BC=1,OB=OC=BC=1,OCB是等边三角形,COB=60,CDB=COB=30,故选B【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型8、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等
12、式求出答案详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=故选A点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键9、B【解析】根据菱形的性质得出DAB是等边三角形,进而利用全等三角形的判定得出ABGDBH,得出四边形GBHD的面积等于ABD的面积,进而求出即可【详解】连接BD,四边形ABCD是菱形,A=60,ADC=120,1=2=60,DAB是等边三角形,AB=2,ABD的高为,扇形BEF的半径为2,圆心角为60,4+5=60,3+5=60,3=4,设AD、BE相交于点G,设BF、DC相交于点H,在ABG和DBH中,ABG
13、DBH(ASA),四边形GBHD的面积等于ABD的面积,图中阴影部分的面积是:S扇形EBF-SABD=故选B10、C【解析】试题分析:对于反比例函数y=,当k0时,在每一个象限内,y随x的增大而减小,根据题意可得:12,则考点:反比例函数的性质二、填空题(本大题共6个小题,每小题3分,共18分)11、.【解析】试题解析:原计划用的时间为: 实际用的时间为: 可列方程为: 故答案为12、2.351【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1
14、时,n是负数【详解】解:将235000000用科学记数法表示为:2.351故答案为:2.351【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值13、1【解析】首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出AOC的度数【详解】解:弦AC与半径OB互相平分,OA=AB,OA=OC,OAB是等边三角形,AOB=60,AOC=1,故答案为1【点睛】本题主要考查了垂径定理的知识,解题的关键是证明OAB是等边三角形,此题难度不大14、1【解析】根据已知ab,结合a、b是两个连续的整数可得a、b的值,即可
15、求解.【详解】解:a,b为两个连续的整数,且ab,a2,b3,ba321故答案为1【点睛】此题考查的是如何根据无理数的范围确定两个有理数的值,题中根据的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,15、4.027【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数详解:4 0270 0000用科学记数法表示是4.0271 故答案为4.0271点睛:本题考查了科学记数法的表示方法科学记数法的表示形式为
16、a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值16、1【解析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值【详解】解:设点A的坐标为,过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,点,点B的坐标为,解得,故答案为:1【点睛】本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题(共8题,共72分)17、48;105;【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得
17、出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案试题解析:(1)1225%=48(人) 1448360=105 48(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:A1A1A2A2A1A1A2A2由上表可得:考点:统计图、概率的计算18、详见解析【解析】由等边三角形的性质得出AB=BC,BD=BE,BAC=BCA=ABC=DBE=60,证出ABE=CBD,证明ABECBD(SAS),得出BAE=BCD=60,得出
18、BAE=BAC,即可得出结论【详解】证明:ABC,DEB都是等边三角形,ABBC,BDBE,BACBCAABCDBE60,ABCABDDBEABD,即ABECBD,在ABE和CBD中,AB=CB,ABE=CBD,BE=BD,,ABECBD(SAS),BAEBCD60,BAEBAC,AB平分EAC【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键19、(1)证明见解析(2) 【解析】分析:(1)由已知条件易得BE=DF且BEDF,从而可得四边BFDE是平行四边形,结合EDB=90即可得到四边形BFDE是矩形;(2)由已知易得AB
19、=5,由AF平分DAB,DCAB可得DAF=BAF=DFA,由此可得DF=AD=5,结合BE=DF可得BE=5,由此可得AB=8,结合BF=DE=4即可求得tanBAF=.详解:(1)四边形ABCD是平行四边形,ABCD,AB=CD, AE=CF,BE=DF, 四边形BFDE是平行四边形 DEAB,DEB=90,四边形BFDE是矩形; (2)在RtBCF中,由勾股定理,得AD =, 四边形ABCD是平行四边形,ABDC,DFA=FAB AF平分DABDAF=FAB, DAF=DFA,DF=AD=5,四边形BFDE是矩形,BE=DF=5,BF=DE=4,ABF=90,AB=AE+BE=8,tan
20、BAF= 点睛:(1)熟悉平行四边形的性质和矩形的判定方法是解答第1小题的关键;(2)能由AF平分DAB,DCAB得到DAF=BAF=DFA,进而推得DF=AD=5是解答第2小题的关键.20、(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定OBC的等边三角形,则BC=OC=2;(2)欲证明PB是O的切线,只需证得OBPB即可(1)解:如图,连接OBABOC,AOC=60,OAB=30,OB=OA,OBA=OAB=30,BOC=60,OB=OC,OBC的等边三角形,BC=OC又OC=2,BC=2;(2)证明:由(1)知,OBC的等边三角形,则COB=60,BC=OC
21、OC=CP,BC=PC,P=CBP又OCB=60,OCB=2P,P=30,OBP=90,即OBPB又OB是半径,PB是O的切线考点:切线的判定21、(1)补图见解析;(2)27;(3)1800名【解析】(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;(2)用360乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解【详解】(1)抽取的总人数是:1025%=40(人),在B类的人数是:4030%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360=27;(3)能在1.5小时内完成家庭作业的人数是:2000(25%+30%+3
22、5%)=1800(人).考点:条形统计图、扇形统计图22、(1)AED=C,理由见解析;(2) 【解析】(1)根据切线的性质和圆周角定理解答即可;(2)根据勾股定理和三角函数进行解答即可【详解】(1)AED=C,证明如下:连接BD,可得ADB=90,C+DBC=90,CB是O的切线,CBA=90,ABD+DBC=90,ABD=C,AEB=ABD,AED=C,(2)连接BE,AEB=90,C=60,CAB=30,在RtDAB中,AD=3,ADB=90,cosDAB=,解得:AB=2,E是半圆AB的中点,AE=BE,AEB=90,BAE=45,在RtAEB中,AB=2,ADB=90,cosEAB=
23、,解得:AE=故答案为【点睛】此题考查了切线的性质、直角三角形的性质以及圆周角定理此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法23、(1),1;(2)与x轴交于(1,0),与y轴没交点;(3)答案不唯一,如:y=+1.【解析】(1)根据函数图象的平移规律,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据点的坐标满足函数解析式,可得答案【详解】(1)函数的图象可以由我们熟悉的函数的图象向上平移1个单位得到,故答案为:,1;(2)函数的图象与x轴、y轴交点的情况是:与x轴交于(1,0),与y轴没交点,故答案为:与x轴交于(1,0),与y轴没交点;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是:y=+1, 答案不唯一,故答案为:y=+1【点睛】本题考查了函数图像的平移变换,函数自变量的取值范围,函数图象与坐标轴的交点等知识,利用函数图象的平移规律是解题关键24、不等式组的解集是5x1,整数解是6,1【解析】先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.【详解】解得:x5,解不等式得:x1,不等式组的解集是5x1,不等式组的整数解是6,1【点睛】本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法