《2022-2023学年山东省日照市莒县文心高中高三下学期联合考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省日照市莒县文心高中高三下学期联合考试数学试题含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数(其中,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:直线是函数图象的一条对称轴;点是函数的一个对称中心;函数与的图象的所有交点的横坐标之和为.其中正
2、确的判断是( )ABCD2设,则ABCD3已知,则( )ABCD4,则与位置关系是 ()A平行B异面C相交D平行或异面或相交5已知斜率为k的直线l与抛物线交于A,B两点,线段AB的中点为,则斜率k的取值范围是( )ABCD6设复数满足为虚数单位),则( )ABCD7已知函数()的部分图象如图所示,且,则的最小值为( )ABCD8如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为( )A4BC2D9设、分别是定义在上的奇函数和偶函数,且,则( )AB0C1D310已知函数,不等式对恒成立,则的取值范围为( )ABCD11已知等差数列中,则()A10B1
3、6C20D2412若复数z满足,则复数z在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13已知平面向量、的夹角为,且,则的最大值是_14已知函数,若关于的方程在定义域上有四个不同的解,则实数的取值范围是_.15设函数,其中若存在唯一的整数使得,则实数的取值范围是_16在中,内角A,B,C的对边分别是a,b,c,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数其中()若曲线在点处切线的倾斜角为,求的值;()已知导函数在区间上存在零点,证明:当时,.18(12分)已知函数,函数.()判断
4、函数的单调性;()若时,对任意,不等式恒成立,求实数的最小值.19(12分)如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面.(1)证明:平面.(2)三棱锥的体积最大时,求二面角的余弦值.20(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,).记数表中位于第i行第j列的元素为,其中(,).如:,.(1)设,请计算,;(2)设,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;(3)设,对于整数
5、t,t不属于数表M,求t的最大值.21(12分)如图,在四棱锥中,侧棱底面,是棱的中点.(1)求证:平面;(2)若,点是线段上一点,且,求直线与平面所成角的正弦值.22(10分)已知等差数列满足,公差,等比数列满足,求数列,的通项公式;若数列满足,求的前项和参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否详解:因为为对称中心,且最低点为,所以A=3,且 由 所以,将带入得 ,所以由此可得错误,正确,
6、当时,所以与 有6个交点,设各个交点坐标依次为 ,则,所以正确所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题2、C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3、C【解析】利用诱导公式得,再利用倍角公式,即可得答案.【详
7、解】由可得,.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.4、D【解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交选D5、C【解析】设,设直线的方程为:,与抛物线方程联立,由得,利用韦达定理结合已知条件得,代入上式即可求出的取值范围【详解】设直线的方程为:, ,联立方程,消去得:,且,线段的中点为,,把 代入,得,故选:【点睛】本题主要考查了直线与抛物线的位置关系,考查了韦达定理的应用,属于中档题6、B【解析】易得,分子分母同乘以分母的共轭复数即可.【详解】由已知
8、,所以.故选:B.【点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.7、A【解析】是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得【详解】由题意,函数在轴右边的第一个零点为,在轴左边第一个零点是,的最小值是故选:A.【点睛】本题考查三角函数的周期性,考查函数的对称性函数的零点就是其图象对称中心的横坐标8、A【解析】由,两边平方后展开整理,即可求得,则的长可求【详解】解:,故选:【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题9、C【解析】先根据奇偶性,求出的解析式,令,即可
9、求出。【详解】因为、分别是定义在上的奇函数和偶函数,用替换,得 ,化简得,即令,所以,故选C。【点睛】本题主要考查函数性质奇偶性的应用。10、C【解析】确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.11、C【解析】根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.12、A【
10、解析】化简复数,求得,得到复数在复平面对应点的坐标,即可求解.【详解】由题意,复数z满足,可得,所以复数在复平面内对应点的坐标为位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立平面直角坐标系,设,可得,进而可得出,由此将转化为以为自变量的三角函数,利用三角恒等变换思想以及正弦函数的有界性可得出结果.【详解】根据题意建立平面直角坐标系如图所示,设,以、为邻边作平行四边形,则,设,则,且,在中,由正
11、弦定理,得,即,在中,由正弦定理,得,即.,则,当时,取最大值.故答案为:.【点睛】本题考查了向量的数量积最值的计算,将问题转化为角的三角函数的最值问题是解答的关键,考查计算能力,属于难题14、【解析】由题意可在定义域上有四个不同的解等价于关于原点对称的函数与函数的图象有两个交点,运用参变分离和构造函数,进而借助导数分析单调性与极值,画出函数图象,即可得到所求范围.【详解】已知定义在上的函数若在定义域上有四个不同的解等价于关于原点对称的函数与函数f(x)=lnx-x(x0)的图象有两个交点,联立可得有两个解,即可设,则,进而且不恒为零,可得在单调递增.由可得时,单调递减;时,单调递增,即在处取
12、得极小值且为作出的图象,可得时,有两个解.故答案为:【点睛】本题考查利用利用导数解决方程的根的问题,还考查了等价转化思想与函数对称性的应用,属于难题.15、【解析】根据分段函数的解析式画出图像,再根据存在唯一的整数使得数形结合列出临界条件满足的关系式求解即可.【详解】解:函数,且画出的图象如下:因为,且存在唯一的整数使得,故与在时无交点,得;又,过定点又由图像可知,若存在唯一的整数使得时,所以,存在唯一的整数使得所以.根据图像可知,当时, 恒成立.综上所述, 存在唯一的整数使得,此时故答案为:【点睛】本题主要考查了数形结合分析参数范围的问题,需要根据题意分别分析定点右边的整数点中为满足条件的唯
13、一整数,再数形结合列出时的不等式求的范围.属于难题.16、9【解析】已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得结果.【详解】由余弦定理和,可得,得,由,由正弦定理,得.故答案为:.【点睛】本题考查正余弦定理在解三角形中的应用,难度一般.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 ();()证明见解析【解析】()求导得到,解得答案.() ,故,在上单调递减,在上单调递增,设,证明函数单调递减,故,得到证明.【详解】(),故,故.() ,即,存在唯一零点,设零点为,故,即,在上单调递减,在上单调递增,故,设,则,设,则,单调递减,故恒成立,故单调递减
14、.,故当时,.【点睛】本题考查了函数的切线问题,利用导数证明不等式,转化为函数的最值是解题的关键.18、 (1) 故函数在上单调递增,在上单调递减;(2). 【解析】试题分析:()根据题意得到的解析式和定义域,求导后根据导函数的符号判断单调性()分析题意可得对任意,恒成立,构造函数,则有对任意,恒成立,然后通过求函数的最值可得所求试题解析:(I)由题意得, .当时,函数在上单调递增;当时,令,解得;令,解得.故函数在上单调递增,在上单调递减.综上,当时,函数在上单调递增;当时,函数在上单调递增,在上单调递减.(II)由题意知.,当时,函数单调递增不妨设 ,又函数单调递减,所以原问题等价于:当时
15、,对任意,不等式 恒成立,即对任意,恒成立.记,由题意得在上单调递减.所以对任意,恒成立.令,则在上恒成立.故,而在上单调递增,所以函数在上的最大值为.由,解得.故实数的最小值为19、(1)见解析(2)【解析】(1)利用面面垂直的性质定理证得平面,由此证得,根据圆的几何性质证得,由此证得平面.(2)判断出三棱锥的体积最大时点的位置.建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.【详解】(1)证明:因为平面平面是正方形,所以平面.因为平面,所以.因为点在以为直径的半圆弧上,所以.又,所以平面.(2)解:显然,当点位于的中点时,的面积最大,三棱锥的体积也最大.不妨设,记中点为,
16、以为原点,分别以的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则令,得.设平面的法向量为,则令,得,所以.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20、(1)(2)详见解析(3)29【解析】(1)将,代入,可求出,可代入求,可求结果(2)可求,通过反证法证明,(3)可推出,的最大值,就是集合中元素的最大值,求出【详解】(1)由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,则,得,故(2)证明:已知,由题意知等差数列的通项公式为:;等差数列的通项公
17、式为:,得,得,所以若,则存在,使,若,则存在,使,因此,对于正整数,考虑集合,即,下面证明:集合中至少有一元素是7的倍数反证法:假设集合中任何一个元素,都不是7的倍数,则集合中每一元素关于7的余数可以为1,2,3,4,5,6,又因为集合中共有7个元素,所以集合中至少存在两个元素关于7的余数相同,不妨设为,其中,则这两个元素的差为7的倍数,即,所以,与矛盾,所以假设不成立,即原命题成立即集合中至少有一元素是7的倍数,不妨设该元素为,则存在,使,即,由已证可知,若,则存在,使,而,所以为负整数,设,则,且,所以,当,时,对于整数,若,则成立(3)下面用反证法证明:若对于整数,则,假设命题不成立,
18、即,且则对于整数,存在,使成立,整理,得,又因为,所以且是7的倍数,因为,所以,所以矛盾,即假设不成立所以对于整数,若,则,又由第二问,对于整数,则,所以的最大值,就是集合中元素的最大值,又因为,所以【点睛】本题考查数列的综合应用,以及反证法,求最值,属于难题21、(1)证明见解析;(2)【解析】(1)的中点,连接,证明四边形是平行四边形可得,故而平面;(2)以为原点建立空间坐标系,求出平面的法向量,计算与的夹角的余弦值得出答案【详解】(1)证明:取的中点,连接,分别是,的中点,又,四边形是平行四边形,又平面,平面,平面(2)解:,又,故,以为原点,以,为坐标轴建立空间直角坐标系,则,0,0,
19、2,0,2,是的中点,是的三等分点,1,0,2,设平面的法向量为,则,即,令可得, 直线与平面所成角的正弦值为【点睛】本题考查了线面平行的判定,空间向量与直线与平面所成角的计算,属于中档题22、,;.【解析】由,公差,有,成等比数列,所以,解得.进而求出数列,的通项公式;当时,由,所以,当时,由,可得,进而求出前项和【详解】解:由题意知,公差,有1,成等比数列,所以,解得所以数列的通项公式数列的公比,其通项公式当时,由,所以当时,由,两式相减得,所以故所以的前项和,又时,也符合上式,故.【点睛】本题主要考查等差数列和等比数列的概念,通项公式,前项和公式的应用等基础知识;考查运算求解能力,方程思想,分类讨论思想,应用意识,属于中档题