2022-2023学年山东省即墨区重点高中高三下学期一模考试数学试题含解析.doc

上传人:茅**** 文档编号:87795595 上传时间:2023-04-17 格式:DOC 页数:18 大小:1.82MB
返回 下载 相关 举报
2022-2023学年山东省即墨区重点高中高三下学期一模考试数学试题含解析.doc_第1页
第1页 / 共18页
2022-2023学年山东省即墨区重点高中高三下学期一模考试数学试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022-2023学年山东省即墨区重点高中高三下学期一模考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省即墨区重点高中高三下学期一模考试数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示的程序框图,若输入,则输出的结果是( )ABCD2已知等差数列中,则()A10B16C20D243将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为( )ABC

2、D4若(),则( )A0或2B0C1或2D15某校在高一年级进行了数学竞赛(总分100分),下表为高一一班40名同学的数学竞赛成绩:555759616864625980889895607388748677799497100999789818060796082959093908580779968如图的算法框图中输入的为上表中的学生的数学竞赛成绩,运行相应的程序,输出,的值,则( )A6B8C10D126某设备使用年限x(年)与所支出的维修费用y(万元)的统计数据分别为,由最小二乘法得到回归直线方程为,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为( )A8年B9年C10年D11年7

3、若,满足约束条件,则的取值范围为( )ABCD8已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长度后得到函数图象,则函数的解析式为( )ABCD9已知复数,则( )ABCD210已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的方程为( )ABCD11已知双曲线的中心在原点且一个焦点为,直线与其相交于,两点,若中点的横坐标为,则此双曲线的方程是ABCD12若为虚数单位,则复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次

4、为,若点的横坐标为1,则点的横坐标为_.14如图,在棱长为2的正方体中,点、分别是棱,的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是_.15设P为有公共焦点的椭圆与双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为,若,则_.16已知数列满足,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列中,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由

5、.18(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.19(12分)的内角的对边分别为,且.(1)求;(2)若,点为边的中点,且,求的面积.20(12分)如图在棱锥中,为矩形,面,(1)在上是否存在一点,使面,若存在确定点位置,若不存在,请说明理由;(2)当为中点时,求二面角的余弦值.21(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线

6、的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.22(10分)在平面直角坐标系xOy中,曲线C1的参数方程为 (为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆(1)求曲线C1的普通方程和C2的直角坐标方程;(2)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】列举出循环的每一步,可得出输出结果.【详解】,不成立,;不成立,;不成立,;成立,输出的值为.故选:B.【点睛】本题考查利用程序

7、框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.2、C【解析】根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.3、B【解析】由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.4、A【解析】利用复数的模的运算列方程,解方程求得的值.【详解】由于(),所以,解得或.故选:A【点睛

8、】本小题主要考查复数模的运算,属于基础题.5、D【解析】根据程序框图判断出的意义,由此求得的值,进而求得的值.【详解】由题意可得的取值为成绩大于等于90的人数,的取值为成绩大于等于60且小于90的人数,故,所以.故选:D【点睛】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.6、D【解析】根据样本中心点在回归直线上,求出,求解,即可求出答案.【详解】依题意在回归直线上,由,估计第年维修费用超过15万元.故选:D.【点睛】本题考查回归直线过样本中心点、以及回归方程的应用,属于基础题.7、B【解析】根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐

9、标代入即可求得取值范围.【详解】画出可行域,如图所示:由图可知,当直线经过点时,取得最小值5;经过点时,取得最大值5,故.故选:B【点睛】本题考查根据线性规划求范围,属于基础题.8、C【解析】根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的解析式.【详解】函数,由辅助角公式化简可得,因为为函数图象的一条对称轴,代入可得,即,化简可解得,即,所以将函数的图象向右平行移动个单位长度可得,则,故选:C.【点睛】本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.9、C【解析】

10、根据复数模的性质即可求解.【详解】,故选:C【点睛】本题主要考查了复数模的性质,属于容易题.10、A【解析】根据直线:过双曲线的一个焦点,得,又和其中一条渐近线平行,得到,再求双曲线方程.【详解】因为直线:过双曲线的一个焦点,所以,所以,又和其中一条渐近线平行,所以,所以,所以双曲线方程为.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.11、D【解析】根据点差法得,再根据焦点坐标得,解方程组得,即得结果.【详解】设双曲线的方程为,由题意可得,设,则的中点为,由且,得 , ,即,联立,解得,故所求双曲线的方程为故选D【点睛】本题主要考查利用点差法求双曲线标准

11、方程,考查基本求解能力,属于中档题.12、D【解析】根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】当时,得,或,依题意可得,可求得,继而可得答案【详解】因为点的横坐标为1,即当时,所以或,又直线与函数的图象在轴右侧的公共点从左到右依次为,所以,故,所以函数的关系式为当时,(1),即点的横坐标

12、为1,为二函数的图象的第二个公共点故答案为:1【点睛】本题考查三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题14、【解析】取中点,连结,推导出平面平面,从而点在线段上运动,作于,由,能求出线段长度的取值范围【详解】取中点,连结,在棱长为2的正方体中,点、分别是棱、的中点,平面平面,是侧面正方形内一点(含边界),平面,点在线段上运动,在等腰中,作于,由等面积法解得:,线段长度的取值范围是,故答案为:,【点睛】本题考查线段长的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题15、【解析】设根据椭圆的几何性质

13、可得,根据双曲线的几何性质可得,,即故答案为16、【解析】项和转化可得,讨论是否满足,分段表示即得解【详解】当时,由已知,可得,故,由-得,显然当时不满足上式,故答案为:【点睛】本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,【解析】由数列为“数列”可得,,两式相减得,又,利用等比数列通项公式即可求出,进而求出;由题意得,两式相减得,据此可得,当时,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值.【详解】因为数列为“

14、数列”,所以,故,两式相减得, 在中令,则可得,故所以,所以数列是以为首项,以为公比的等比数列,所以,因为,所以. (2)由题意得,故,两式相减得 所以,当时,又因为所以当时,所以成立,所以当时,数列是常数列, 所以 因为当时,成立,所以,所以在中令,因为,所以可得,所以,由时,且为整数,可得,把分别代入不等式可得,,所以存在数列符合题意,的所有值为.【点睛】本题考查数列的新定义、等比数列的通项公式和数列递推公式的运用;考查运算求解能力、逻辑推理能力和对新定义的理解能力;通过反复利用递推公式,得到数列为常数列是求解本题的关键;属于综合型强、难度大型试题.18、(1),;(2).【解析】(1)利

15、用公式即可求得曲线的极坐标方程;联立直线和曲线的极坐标方程,即可求得交点坐标;(2)设出点坐标的参数形式,将问题转化为求三角函数最值的问题即可求得.【详解】(1)曲线的极坐标方程: 联立,得,又因为都满足两方程,故两曲线的交点为,.(2)易知,直线. 设点,则点到直线的距离(其中). 面积的最大值为.【点睛】本题考查极坐标方程和直角坐标方程之间的相互转化,涉及利用椭圆的参数方程求面积的最值问题,属综合中档题.19、(1);(2).【解析】(1)利用正弦定理边化角,再利用余弦定理求解即可.(2) 为为的中线,所以再平方后利用向量的数量积公式进行求解,再代入可解得,再代入面积公式求解即可.【详解】

16、(1)由,可得,由余弦定理可得,故.(2)因为为的中线,所以,两边同时平方可得,故.因为,所以.所以的面积.【点睛】本题主要考查了利用正余弦定理与面积公式求解三角形的问题,同时也考查了向量在解三角形中的运用,属于中档题.20、(1)见解析;(2)【解析】(1)要证明PC面ADE,由已知可得ADPC,只需满足即可,从而得到点E为中点;(2)求出面ADE的法向量,面PAE的法向量,利用空间向量的数量积,求解二面角PAED的余弦值【详解】(1)法一:要证明PC面ADE,易知AD面PDC,即得ADPC,故只需即可,所以由,即存在点E为PC中点. 法二:建立如图所示的空间直角坐标系DXYZ, 由题意知P

17、DCD1,设, ,由,得,即存在点E为PC中点.(2)由(1)知, ,设面ADE的法向量为,面PAE的法向量为由的法向量为得,得,同理求得 所以,故所求二面角PAED的余弦值为.【点睛】本题考查二面角的平面角的求法,考查直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力21、(1);(2)【解析】(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2)将直线参数方程代入圆的普通方程,可得,而根据直线参数方程的几何意义,知,代入即可解决.【详解】(1)直线的参数方程为(为参数),消去;得曲线的极坐标方程为.由,可得,即曲线的直角坐标方程为;(2)将直线的参数方程(为参数)代入的

18、方程,可得,设,是点对应的参数值,则.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,直线参数方程的几何意义,是一道容易题.22、(1)C1:y21,C2 :x2+(y2)21;(2)0,1【解析】()消去参数可得C1的直角坐标方程,易得曲线C2的圆心的直角坐标为(0,2),可得C2的直角坐标方程;()设M(3cos,sin),由三角函数和二次函数可得|MC2|的取值范围,结合圆的知识可得答案【详解】(1)消去参数可得C1 的普通方程为y21,曲线C2 是圆心为(2,),半径为1 的圆,曲线C2 的圆心的直角坐标为(0,2),C2 的直角坐标方程为x2+(y2)21; (2)设M(3cos,sin),则|MC2| ,1sin1,1|MC2|,由题意结合图象可得|MN|的最小值为110,最大值为1,|MN|的取值范围为0,1【点睛】本题考查椭圆的参数方程,涉及圆的知识和极坐标方程,属中档题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁