2022-2023学年山东省临沂市第十九中新高三下学期联合考试数学试题含解析.doc

上传人:茅**** 文档编号:87796852 上传时间:2023-04-17 格式:DOC 页数:18 大小:1.94MB
返回 下载 相关 举报
2022-2023学年山东省临沂市第十九中新高三下学期联合考试数学试题含解析.doc_第1页
第1页 / 共18页
2022-2023学年山东省临沂市第十九中新高三下学期联合考试数学试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022-2023学年山东省临沂市第十九中新高三下学期联合考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省临沂市第十九中新高三下学期联合考试数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知定义在上的函数,则,的大小关系为( )ABCD2若复数()在复平面内的对应点在直线上,则等于( )ABCD3已知定义在上的函数,若函数为偶函数,且对任意, ,都有,若,则实数的取值范围是( )ABCD4已知三棱锥中,是等边三角形,则三棱锥的外接球

2、的表面积为( )ABCD5 “”是“函数(为常数)为幂函数”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件6一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是( )ABCD7若某几何体的三视图如图所示,则该几何体的表面积为( )A240B264C274D2828已知直线和平面,若,则“”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D不充分不必要9在钝角中,角所对的边分别为,为钝角,若,则的最大值为( )ABC1D10已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测

3、后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为( )ABCD11已知函,则的最小值为( )AB1C0D12中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD二、填空题:本题共4小题,每小题5分,共20分。13若双曲线的两条渐近线斜率分别为,若,则该双曲线的离心率为_.14已知x,y满足约束条件,则的最小值为_15若随机变量的分布列如表所示,则_,_-10116在中,已知,则的最小值

4、是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.18(12分)设抛物线过点.(1)求抛物线C的方程;(2)F是抛物线C的焦点,过焦点的直线与抛物线交于A,B两点,若,求的值.19(12分)已知抛物线的焦点为,点在抛物线上,直线过点,且与抛物线交于,两点(1)求抛物线的方程及点的坐标;(2)求的最大值20(12分)为了解广大学生家长对校园食品安全的认识,某市食品安全检测部门对该市家长进行了一次校园食品安全网络知识问卷调查,每一位学生家长仅有一次参加机会,现对有效问卷进行整理,并随机抽取出了200份答卷,

5、统计这些答卷的得分(满分:100分)制出的频率分布直方图如图所示,由频率分布直方图可以认为,此次问卷调查的得分服从正态分布,其中近似为这200人得分的平均值(同一组数据用该组区间的中点值作为代表).(1)请利用正态分布的知识求;(2)该市食品安全检测部门为此次参加问卷调查的学生家长制定如下奖励方案:得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费:每次获赠的随机话费和对应的概率为:获赠的随机话费(单位:元)概率市食品安全检测部门预计参加此次活动的家长约5000人,请依据以上数据估计此次活动可能赠送出多少话费?附:;若;则,.21(12分)已知函数(1)若函数在上单调递增,求实数

6、的值;(2)定义:若直线与曲线都相切,我们称直线为曲线、的公切线,证明:曲线与总存在公切线22(10分)记为数列的前项和,已知,等比数列满足,.(1)求的通项公式;(2)求的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.【详解】当时,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.【点睛】本题考查了利用函数的单调性判断函数值大

7、小问题,判断出函数的奇偶性、单调性是解题的关键.2、C【解析】由题意得,可求得,再根据共轭复数的定义可得选项.【详解】由题意得,解得,所以,所以,故选:C.【点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题.3、A【解析】根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.【详解】解:因为函数为偶函数,所以函数的图象关于对称,因为对任意, ,都有,所以函数在上为减函数,则,解得:.即实数的取值范围是.故选:A.【点睛】本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.4、D【解析】根据底面为等边三角形,取中点,可证明平面,

8、从而,即可证明三棱锥为正三棱锥.取底面等边的重心为,可求得到平面的距离,画出几何关系,设球心为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积.【详解】设为中点,是等边三角形,所以,又因为,且,所以平面,则,由三线合一性质可知所以三棱锥为正三棱锥,设底面等边的重心为,可得,所以三棱锥的外接球球心在面下方,设为,如下图所示:由球的性质可知,平面,且在同一直线上,设球的半径为,在中,即,解得,所以三棱锥的外接球表面积为,故选:D.【点睛】本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题.5、A【解析】根据幂函数定义,求得的值

9、,结合充分条件与必要条件的概念即可判断.【详解】当函数为幂函数时,解得或,“”是“函数为幂函数”的充分不必要条件.故选:A.【点睛】本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.6、D【解析】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线可解得【详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线方程得:,即,由得故选:【点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平7、B【解析】将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【详解】由三视图可

10、得,该几何体的直观图如图所示,延长交于点,其中,所以表面积.故选B项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题8、B【解析】由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【详解】,不能确定还是,当时,存在,由又可得,所以“”是“”的必要不充分条件,故选:B【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.9、B【解析】首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解:因为,所以因为所以,即,时故选:【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.10、D【解析】根据分步计数原理,由

11、古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.11、B【解析】,利用整体换元法求最小值.【详解】由已知,又,故当,即时,.故选:B.【点睛】本题考查整体换元法求正弦型函数的最值,涉及到二倍角公式的应用,是一道中档题.12、A【解析】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求

12、得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由题得,再根据求解即可.【详解】双曲线的两条渐近线为,可令,则,所以,解得.故答案为:2.【点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.14、【解析】先根据约束条件画出可行域,再由表示直线在y轴上的截距最大即可得解.【详解】x,y满足约束条件,画出可行域如图所示.目标函数,即.平移直线,截距最大时即为所求.点A(,),z在点A处有最小值:z2,故

13、答案为:.【点睛】本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法15、 【解析】首先求得a的值,然后利用均值的性质计算均值,最后求得的值,由方差的性质计算的值即可.【详解】由题意可知,解得(舍去)或.则,则,由方差的计算性质得.【点睛】本题主要考查分布列的性质,均值的计算公式,方差的计算公式,方差的性质等知识,意在考查学生的转化能力和计算求解能力.16、【解析】分析:可先用向量的数量积公式将原式变形为:,然后再结合余弦定理整理为,再由cosC的余弦定理得到a,b的关系式,最后利用基本不等式求解即可.详解:已知,可得,将角A,B,C的余弦定理代入得,

14、由,当a=b时取到等号,故cosC的最小值为.点睛:考查向量的数量积、余弦定理、基本不等式的综合运用,能正确转化是解题关键.属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)答案见解析【解析】(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【详解】(1),当且仅当时取等号,的最小值;(2)证明:依题意,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.【点睛】本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就

15、是分析法18、(1)(2)【解析】(1)代入计算即可.(2) 设直线AB的方程为,再联立直线与抛物线的方程,消去可得的一元二次方程,再根据韦达定理与求解,进而利用弦长公式求解即可.【详解】解:(1)因为抛物线过点,所以,所以,抛物线的方程为 (2)由题意知直线AB的斜率存在,可设直线AB的方程为,.因为,所以,联立,化简得,所以,所以,解得,所以.【点睛】本题考查抛物线的方程以及联立直线与抛物线求弦长的简单应用.属于基础题.19、(1),;(2)1【解析】(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;(2)设直线l的方程为:x+my10,代入y24x,

16、得,y2+4my40,设A(x1,y1),B(x2,y2),则y1+y24m,y1y24,x1+x22+4m2,x1x21,(),(x22,),由此能求出的最大值【详解】(1)点F是抛物线y22px(p0)的焦点,P(2,y0)是抛物线上一点,|PF|3,23,解得:p2,抛物线C的方程为y24x,点P(2,n)(n0)在抛物线C上,n2428,由n0,得n2,P(2,2)(2)F(1,0),设直线l的方程为:x+my10,代入y24x,整理得,y2+4my40设A(x1,y1),B(x2,y2),则y1,y2是y2+4my40的两个不同实根,y1+y24m,y1y24,x1+x2(1my1)

17、+(1my2)2m(y1+y2)2+4m2,x1x2(1my1)(1my2)1m(y1+y2)+m2y1y21+4m24m21,(),(x22,),(x12)(x22)+()()x1x22(x1+x2)+4148m2+44+8m+88m2+8m+58(m)2+1当m时,取最大值1【点睛】本题考查抛物线方程的求法,考查向量的数量积的最大值的求法,考查抛物线、直线方程、韦达定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题20、(1);(2)估计此次活动可能赠送出100000元话费【解析】(1)根据正态分布的性质可求的值.(2)设某家长参加活动可获赠话费为元,利用题设条件求出其分布列,

18、再利用公式求出其期望后可得计此次活动可能赠送出的话费数额.【详解】(1)根据题中所给的统计表,结合题中所给的条件,可以求得又,所以;(2)根据题意,某家长参加活动可获赠话费的可能值有10,20,30,40元,且每位家长获得赠送1次、2次话费的概率都为,得10元的情况为低于平均值,概率,得20元的情况有两种,得分低于平均值,一次性获20元话费;得分不低于平均值,2次均获赠10元话费,概率,得30元的情况为:得分不低于平均值,一次获赠10元话费,另一次获赠20元话费,其概率为,得40元的其情况得分不低于平均值,两次机会均获20元话费,概率为.所以变量的分布列为:某家长获赠话费的期望为.所以估计此次

19、活动可能赠送出100000元话费.【点睛】本题考查正态分布、离散型随机变量的分布列及数学期望,注意与正态分布有关的计算要利用该分布的密度函数图象的对称性来进行,本题属于中档题.21、(1);(2)见解析.【解析】(1)求出导数,问题转化为在上恒成立,利用导数求出的最小值即可求解;(2)分别设切点横坐标为,利用导数的几何意义写出切线方程,问题转化为证明两直线重合,只需满足有解即可,利用函数的导数及零点存在性定理即可证明存在.【详解】(1),函数在上单调递增等价于在上恒成立令,得,所以在单调递减,在单调递增,则因为,则在上恒成立等价于在上恒成立;又,所以,即(2)设的切点横坐标为,则切线方程为设的

20、切点横坐标为,则,切线方程为若存在,使成为同一条直线,则曲线与存在公切线,由得消去得即令,则所以,函数在区间上单调递增,使得时总有又时,在上总有解综上,函数与总存在公切线【点睛】本题主要考查了利用导数研究函数的恒成立问题,导数的几何意义,利用导数证明方程有解,属于难题.22、(1)(2)当时,;当时,.【解析】(1)利用数列与的关系,求得;(2)由(1)可得:,算出公比,利用等比数列的前项和公式求出.【详解】(1)当时,当时,因为适合上式,所以.(2)由(1)得,设等比数列的公比为,则,解得,当时,当时,.【点睛】本题主要考查数列与的关系、等比数列的通项公式、前项和公式等基础知识,考查运算求解能力.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁