2022-2023学年广东省佛山市南海区南海实验中学中考数学对点突破模拟试卷含解析.doc

上传人:茅**** 文档编号:87797199 上传时间:2023-04-17 格式:DOC 页数:22 大小:1.13MB
返回 下载 相关 举报
2022-2023学年广东省佛山市南海区南海实验中学中考数学对点突破模拟试卷含解析.doc_第1页
第1页 / 共22页
2022-2023学年广东省佛山市南海区南海实验中学中考数学对点突破模拟试卷含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2022-2023学年广东省佛山市南海区南海实验中学中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省佛山市南海区南海实验中学中考数学对点突破模拟试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的

2、)1以坐标原点为圆心,以2个单位为半径画O,下面的点中,在O上的是()A(1,1)B(,)C(1,3)D(1,)2下列命题中,正确的是( )A菱形的对角线相等B平行四边形既是轴对称图形,又是中心对称图形C正方形的对角线不能相等D正方形的对角线相等且互相垂直3已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A6 B7 C11 D124如图,PA和PB是O的切线,点A和B是切点,AC是O的直径,已知P40,则ACB的大小是( )A60B65C70D755如图,在ABCD中,BF平分ABC,交AD于点F,CE平分BCD,交AD于点E,若AB6,EF2,则BC的长为()A8B10C12D1

3、46下列运算结果正确的是()Aa3+a4=a7Ba4a3=aCa3a2=2a3D(a3)3=a67纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A米B米C米D米8如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()ABCD9据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A5.3103B5.3104C5.3107D5.

4、310810根据文化和旅游部发布的“五一”假日旅游指南,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元将880亿用科学记数法表示应为()A8107B880108C8.8109D8.8101011当 a0 时,下列关于幂的运算正确的是( )Aa0=1Ba1=aC(a)2=a2D(a2)3=a512若ab0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13计算:(2)=_.14若x,y为实数,y,则4y3x的平方根是_15分解因式:mx2

5、6mx+9m=_16如图,与是以点为位似中心的位似图形,相似比为,若点的坐标是,则点的坐标是_17如图,AC是正五边形ABCDE的一条对角线,则ACB_18如图,已知ABC和ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB4,则OE的最小值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(3,0)、B(1,0)(1)求平移后的抛物线的表达式(2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P

6、点坐标是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形BOD相似?若存在,求点M坐标;若不存在,说明理由20(6分)已知抛物线yax2+(3b+1)x+b3(a0),若存在实数m,使得点P(m,m)在该抛物线上,我们称点P(m,m)是这个抛物线上的一个“和谐点”(1)当a2,b1时,求该抛物线的“和谐点”;(2)若对于任意实数b,抛物线上恒有两个不同的“和谐点”A、B求实数a的取值范围;若点A,B关于直线yx(+1)对称,求实数b的最小值21(6分)如图,抛物线y=x2+bx+c与x轴交于A,B两点(A在B

7、的左侧),其中点B(3,0),与y轴交于点C(0,3)(1)求抛物线的解析式;(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在OBC内(包括OBC的边界),求h的取值范围;(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=3上,PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由22(8分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B求此抛物线的解析式;已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;

8、若不存在,请说明理由.23(8分)如图,在锐角ABC中,小明进行了如下的尺规作图:分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;作直线PQ分别交边AB、BC于点E、D小明所求作的直线DE是线段AB的 ;联结AD,AD7,sinDAC,BC9,求AC的长24(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DEAC,CEBD(1)求证:四边形OCED是菱形;(2)若BAC=30,AC=4,求菱形OCED的面积25(10分)综合与探究:如图1,抛物线y=x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点经过点A的直线l与y轴交于点D(0,)(1

9、)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A,连接FA、BA,设直线l的运动时间为t(t0)秒探究下列问题:请直接写出A的坐标(用含字母t的式子表示);当点A落在抛物线上时,求直线l的运动时间t的值,判断此时四边形ABEF的形状,并说明理由;(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由26(12分)科研所计划建一幢宿舍楼,因为科

10、研所实验中会产生辐射,所以需要有两项配套工程在科研所到宿舍楼之间修一条高科技的道路;对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为yax+b(0x3)当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w防辐射费+修路费(1)当科研所到宿舍楼的距离x3km时,防辐射费y_万元,a_,b_;(2)若m90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含

11、楼的距离小于等于3km,求m的范围?27(12分)先化简,再求值:(2),其中x满足x2x4=0参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)到坐标原点的距离为2,因此点在圆外D选项(1,) 到坐标原点的距离为2,因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.2、D【解析】根据菱形,平行四边形,正方形的性质定理判断即可【详解】A.菱形的对角线不一定相等, A 错误;B.平行

12、四边形不是轴对称图形,是中心对称图形,B 错误; C. 正方形的对角线相等,C错误; D.正方形的对角线相等且互相垂直,D 正确; 故选:D【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理3、C【解析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值【详解】x+2y=5,2x+4y=10,则2x+4y+1=10+1=1故选C【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型4、C【解析】试题分析:连接OB,根据PA、PB为切线可得:OAP=OBP=90,根据四边形AOB

13、P的内角和定理可得AOB=140,OC=OB,则C=OBC,根据AOB为OBC的外角可得:ACB=1402=70.考点:切线的性质、三角形外角的性质、圆的基本性质.5、B【解析】试题分析:根据平行四边形的性质可知AB=CD,ADBC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.6、B【解析】分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的

14、法则对各选项进行逐一分析即可【详解】A. a3+a4a7 ,不是同类项,不能合并,本选项错误; B. a4a3=a4-3=a;,本选项正确; C. a3a2=a5;,本选项错误; D.(a3)3=a9,本选项错误.故选B【点睛】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单7、C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】35000纳米=3500010-9米=3.510-5米故选C【点睛】此题主要考查了用科

15、学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定8、B【解析】解:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,使图中黑色部分的图形仍然构成一个轴对称图形的概率是:故选B9、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】解:5300万=53000000=.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:必须满足:;比原来的数的整数位数少1(也可以通过小数点

16、移位来确定).10、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】880亿=880 0000 0000=8.81010,故选D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值11、A【解析】直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案【详解】A选项:a0=1,正确;B选项:a1= ,故此选项错误;C

17、选项:(a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误; 故选A【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键12、D【解析】根据ab0及正比例函数与反比例函数图象的特点,可以从a0,b0和a0,b0两方面分类讨论得出答案【详解】解:ab0,分两种情况:(1)当a0,b0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a0,b0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性

18、质,要掌握它们的性质才能灵活解题二、填空题:(本大题共6个小题,每小题4分,共24分)13、-1【解析】根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论【详解】 故答案为【点睛】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键14、【解析】与同时成立, 故只有x24=0,即x=2,又x20,x=2,y=,4y3x=1(6)=5,4y3x的平方根是故答案:15、m(x3)1【解析】先把提出来,然后对括号里面的多项式用公式法分解即可。【详解】【点睛】解题的关键是熟练掌握因式分解的方法。16、(2,2) 【解析】分析:首先解直角三角形得出A点坐标,再利用

19、位似是特殊的相似,若两个图形与是以点为位似中心的位似图形,相似比是k,上一点的坐标是 则在中,它的对应点的坐标是或,进而求出即可详解:与是以点为位似中心的位似图形, ,若点的坐标是, 过点作交于点E. 点的坐标为:与的相似比为,点的坐标为:即点的坐标为:故答案为:点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.17、36【解析】由正五边形的性质得出B=108,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果【详解】五边形ABCDE是正五边形,B=108,AB=CB,ACB=(180108)2=36;故答案为3618、1【解析】根据等边三角形的性质可得OCAC,ABD3

20、0,根据“SAS”可证ABDACE,可得ACE30ABD,当OEEC时,OE的长度最小,根据直角三角形的性质可求OE的最小值【详解】解:ABC的等边三角形,点O是AC的中点,OCAC,ABD30ABC和ADE均为等边三角形,ABAC,ADAE,BACDAE60,BADCAE,且ABAC,ADAE,ABDACE(SAS)ACE30ABD当OEEC时,OE的长度最小,OEC90,ACE30OE最小值OCAB1,故答案为1【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19

21、、(1)y=x2+2x3;(2)点P坐标为(1,2);(3)点M坐标为(1,3)或(1,2)【解析】(1)设平移后抛物线的表达式为y=a(x+3)(x-1)由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;(2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C坐标,连接BC,与对称轴交点即为所求点P,再求得直线BC解析式,联立方程组求解可得;(3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到EDO为等腰三角直角三角形,从而可得到MDO=BOD=135,故此当或时,以M、O

22、、D为顶点的三角形与BOD相似由比例式可求得MD的长,于是可求得点M的坐标【详解】(1)设平移后抛物线的表达式为y=a(x+3)(x1),由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,平移后抛物线的二次项系数与原抛物线的二次项系数相同,平移后抛物线的二次项系数为1,即a=1,平移后抛物线的表达式为y=(x+3)(x1),整理得:y=x2+2x3;(2)y=x2+2x3=(x+1)24,抛物线对称轴为直线x=1,与y轴的交点C(0,3),则点C关于直线x=1的对称点C(2,3),如图1,连接B,C,与直线x=1的交点即为所求点P,由B(1,0),C(2,3)可得直线BC解析式为y

23、=x1,则,解得,所以点P坐标为(1,2);(3)如图2,由得,即D(1,1),则DE=OD=1,DOE为等腰直角三角形,DOE=ODE=45,BOD=135,OD=,BO=1,BD=,BOD=135,点M只能在点D上方,BOD=ODM=135,当或时,以M、O、D为顶点的三角形BOD相似,若,则,解得DM=2,此时点M坐标为(1,3);若,则,解得DM=1,此时点M坐标为(1,2);综上,点M坐标为(1,3)或(1,2)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判

24、定,证得ODM=BOD=135是解题的关键20、(1)()或(1,1);(1)2a17b的最小值是【解析】(1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;(1)抛物线上恒有两个不同的“和谐点”A、B则关于m的方程m=am1+(3b+1)m+b-3的根的判别式=9b1-4ab+11a令y=9b1-4ab+11a,对于任意实数b,均有y2,所以根据二次函数y=9b1-4ab+11的图象性质解答;利用二次函数图象的对称性质解答即可【详解】(1)当a1,b1时,m1m1+4m+14,解得m或m1所以点P的坐标是(,)或(1,1);(1)mam1+(3b+1)m+b

25、3,9b14ab+11a令y9b14ab+11a,对于任意实数b,均有y2,也就是说抛物线y9b14ab+11的图象都在b轴(横轴)上方(4a)14911a22a17由“和谐点”定义可设A(x1,y1),B(x1,y1),则x1,x1是ax1+(3b+1)x+b32的两不等实根,线段AB的中点坐标是:(,)代入对称轴yx(+1),得(+1),3b+1+aa2,2,a1为定值,3b+1+a11,bb的最小值是【点睛】此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点

26、”的定义是解题的难点21、(1)y=x2+2x+3(2)2h4(3)(1,4)或(0,3)【解析】(1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b的值,可得抛物线L的表达式;(2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在OBC内(包括OBC的边界)时h的取值范围.(3)设P(m,m2+2m+3),过P作MN

27、x轴,交直线x=3于M,过B作BNMN,通过证明BNPPMQ求解即可.【详解】(1)把点B(3,0),点C(0,3)代入抛物线y=x2+bx+c中得:,解得:,抛物线的解析式为:y=x2+2x+3;(2)y=x2+2x+3=(x1)2+4,即抛物线的对称轴是:x=1,设原抛物线的顶点为D,点B(3,0),点C(0,3)易得BC的解析式为:y=x+3,当x=1时,y=2,如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=(x1)2+2=x2+2x+1,h=31=2,当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=(x1)2+0=x2+2x1,h=

28、3+1=4,h的取值范围是2h4;(3)设P(m,m2+2m+3),如图2,PQB是等腰直角三角形,且PQ=PB,过P作MNx轴,交直线x=3于M,过B作BNMN,易得BNPPMQ,BN=PM,即m2+2m+3=m+3,解得:m1=0(图3)或m2=1,P(1,4)或(0,3)【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC上和落在OB上求出h的值,解(3)的关键是证明BNPPMQ.22、(1)(2)(0,-1)(3)(1,0)(9,0

29、)【解析】(1)将A(1,0)、C(0,3)两点坐标代入抛物线yax2bx3a中,列方程组求a、b的值即可;(2)将点D(m,m1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D的坐标;(3)分两种情形过点C作CPBD,交x轴于P,则PCBCBD,连接BD,过点C作CPBD,交x轴于P,分别求出直线CP和直线CP的解析式即可解决问题【详解】解:(1)将A(1,0)、C(0,3)代入抛物线yax2bx3a中,得 ,解得 yx22x3;(2)将点D(m,m1)代入yx22x3中,得m22m3m1,解得m2或1,点D(m,m1)在第四象限,D(2,3),直线BC解析式

30、为yx3,BCDBCO45,CDCD2,OD321,点D关于直线BC对称的点D(0,1);(3)存在满足条件的点P有两个过点C作CPBD,交x轴于P,则PCBCBD,直线BD解析式为y3x9,直线CP过点C,直线CP的解析式为y3x3,点P坐标(1,0),连接BD,过点C作CPBD,交x轴于P,PCBDBC,根据对称性可知DBCCBD,PCBCBD,直线BD的解析式为直线CP过点C,直线CP解析式为,P坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0)【点睛】本题考查了二次函数的综合运用关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类

31、讨论,不能漏解23、(1)线段AB的垂直平分线(或中垂线);(2)AC5【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得ADBD,得到CD2,又因为已知sinDAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DFAC,垂足为点F,如图,DE是线段AB的垂直平分线,ADBD7CDBCBD2,在RtADF中,sinDAC,DF1,在RtADF中,AF,

32、在RtCDF中,CF,ACAF+CF【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.24、(1)证明见解析;(1)【解析】(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可(1)解直角三角形求出BC=1AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可【详解】证明:,四边形OCED是平行四边形,矩形ABCD,四边形OCED是菱形;在矩形ABCD中,连接OE,交CD于点

33、F,四边形OCED为菱形,为CD中点,为BD中点,【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半25、(1)A(1,0),B(3,0),y=x;(2)A(t1, t);ABEF为菱形,见解析;(3)存在,P点坐标为(,)或(,)【解析】(1)通过解方程x2+x+0得A(1,0),B(3,0),然后利用待定系数法确定直线l的解析式;(2)作AHx轴于H,如图2,利用OA1,OD得到OAD60,再利用平移和对称的性质得到EAEAt,AEFAEF60,然后根据含30度的直角三角形三边的关系表示出AH,EH即可得到A的

34、坐标;把A(t1,t)代入yx2x得(t1)2(t1)t,解方程得到t2,此时A点的坐标为(2,),E(1,0),然后通过计算得到AFBE2,AFBE,从而判断四边形ABEF为平行四边形,然后加上EFBE可判定四边形ABEF为菱形;(3)讨论:当ABBE时,四边形ABEP为矩形,利用点A和点B的横坐标相同得到t13,解方程求出t得到A(3,),再利用矩形的性质可写出对应的P点坐标;当ABEA,如图4,四边形ABPE为矩形,作AQx轴于Q,先确定此时A点的坐标,然后利用点的平移确定对应P点坐标【详解】(1)当y=0时,x2+x+=0,解得x1=1,x2=3,则A(1,0),B(3,0),设直线l

35、的解析式为y=kx+b,把A(1,0),D(0,)代入得,解得,直线l的解析式为y=x;(2)作AHx轴于H,如图,OA=1,OD=,OAD=60,EFAD,AEF=60,点A 关于直线l的对称点为A,EA=EA=t,AEF=AEF=60,在RtAEH中,EH=EA=t,AH=EH=t,OH=OE+EH=t1+t=t1,A(t1, t);把A(t1, t)代入y=x2+x+得(t1)2+(t1)+=t,解得t1=0(舍去),t2=2,当点A落在抛物线上时,直线l的运动时间t的值为2;此时四边形ABEF为菱形,理由如下:当t=2时,A点的坐标为(2,),E(1,0),OEF=60OF=OE=,E

36、F=2OE=2,F(0,),AFx轴,AF=BE=2,AFBE,四边形ABEF为平行四边形,而EF=BE=2,四边形ABEF为菱形;(3)存在,如图:当ABBE时,四边形ABEP为矩形,则t1=3,解得t=,则A(3,),OE=t1=,此时P点坐标为(,);当ABEA,如图,四边形ABPE为矩形,作AQx轴于Q,AEA=120,AEB=60,EBA=30BQ=AQ=t=t,t1+t=3,解得t=,此时A(1,),E(,0),点A向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,),综上所述,满足条件的P点坐标为(,)或(,)【点睛】本题考查

37、了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质26、 (1)0,360,101;(2)当距离为2公里时,配套工程费用最少;(3)0m1【解析】(1)当x1时,y720,当x3时,y0,将x、y代入yax+b,即可求解;(2)根据题目:配套工程费w防辐射费+修路费分0x3和x3时讨论.当0x3时,配套工程费W90x2360x+101,当x3时,W90x2,分别求最小值即可;(3)0x3,Wmx2360x+101,(m0),其对称轴x,然后讨论:x=3时和x3时两种情况m取值即可求解【详解】解:(1)

38、当x1时,y720,当x3时,y0,将x、y代入yax+b,解得:a360,b101,故答案为0,360,101;(2)当0x3时,配套工程费W90x2360x+101,当x2时,Wmin720;当x3时,W90x2,W随x最大而最大,当x3时,Wmin810720,当距离为2公里时,配套工程费用最少;(3)0x3,Wmx2360x+101,(m0),其对称轴x,当x3时,即:m60,Wminm()2360()+101,Wmin675,解得:60m1;当x3时,即m60,当x3时,Wmin9m675,解得:0m60,故:0m1【点睛】本题考查了二次函数的性质在实际生活中的应用最值问题常利函数的增减性来解答27、1【解析】首先运用乘法分配律将所求的代数式去括号,然后再合并化简,最后整体代入求解.【详解】解:(2)=x232x+2=x22x1,x2x4=0,x22x=8,原式=81=1【点睛】分式混合运算要注意先去括号;分子、 分母能因式分解的先因式分解;除法要统一为乘法运算.注意整体代入思想在代数求值计算中的应用.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁