《山东省济南市济阳区达标名校2023届中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省济南市济阳区达标名校2023届中考数学最后冲刺浓缩精华卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1下列函数中,y关于x的二次函数是( )Ayax2+bx+cByx(x1)Cy=Dy(x1)2x22如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若A与DOB互余,则EB的长是( )A2B4CD23一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()ABCD4图为一根圆柱形的空心钢管,它的主视图是( )ABCD5如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则DEF的面积与BAF的面积之比为( )A3:4B9:1
3、6C9:1D3:16我国的钓鱼岛面积约为4400000m2,用科学记数法表示为()A4.4106 B44105 C4106 D0.441077去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%设降价后房价为x,则去年二月份之前房价为()A(1+40%)30%xB(1+40%)(130%)xCD8有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )A4.8,6,6B5,5,5C4.8,6,5D5,6,69下列计算正确的是()A(8)8=0B3+=3C(3b)2=9b2Da6a2=a310人的大脑每天能记录大约8 600
4、万条信息,数据8 600用科学记数法表示为()A0.86104B8.6102C8.6103D86102二、填空题(本大题共6个小题,每小题3分,共18分)11若方程x24x+10的两根是x1,x2,则x1(1+x2)+x2的值为_12如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60,然后在坡顶D测得树顶B的仰角为30,已知DEEA,斜坡CD的长度为30m,DE的长为15m,则树AB的高度是_m13一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_.142018年1月4日
5、在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为_15观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为,第3个图形中阴影部分的面积为,第4个图形中阴影部分的面积为,则第n个图形中阴影部分的面积为_.(用字母n表示)16如图,在ABC中,ABAC10cm,F为AB上一点,AF2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0t5),连D交CF于点G若CG2FG,则t的值为_三、解答题(共8题,共72分)17(8
6、分)如图,在ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且EAC是等边三角形(1)求证:四边形ABCD是菱形(2)若AC=8,AB=5,求ED的长18(8分)当=,b=2时,求代数式的值19(8分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将EBF沿EF折叠,得到EBF(1)如图1,连接AB若AEB为等边三角形,则BEF等于多少度在运动过程中,线段AB与EF有何位置关系?请证明你的结论(2)如图2,连接CB,求CBF周长的最小值(3)如图3,连接并延长BB,交AC于点P,当BB6时,求PB的长度20(8分)如图,在四边形ABCD中,点
7、E是对角线BD上的一点,EAAB,ECBC,且EA=EC求证:AD=CD21(8分)如图,一次函数yx+6的图象分别交y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒1个单位的速度出发,设点P的运动时间为t秒(1)点P在运动过程中,若某一时刻,OPA的面积为6,求此时P的坐标;(2)在整个运动过程中,当t为何值时,AOP为等腰三角形?(只需写出t的值,无需解答过程)22(10分)观察下列等式:15+4=32;26+4=42;37+4=52;(1)按照上面的规律,写出第个等式:_;(2)模仿上面的方法,写出下面等式的左边:_=502;(3)按照上面的规律,写出第n个等式,并证明其成立23
8、(12分)如图,在中,,于, .求的长;.求 的长. 24读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意; B. y=
9、x(x1)=x2-x,是二次函数,故符合题意;C. 的自变量在分母中,不是二次函数,故不符合题意; D. y=(x1)2x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a0)的函数叫做二次函数,据此求解即可.2、D【解析】连接CO,由直径AB平分弦CD及垂径定理知COB=DOB,则A与COB互余,由圆周角定理知A=30,COE=60,则OCE=30,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,AB平分CD,COB=DOB,ABCD,CE=DE=2A与DOB互余,A
10、+COB=90,又COB=2A,A=30,COE=60,OCE=30,设OE=x,则CO=2x,CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,BO=CO=4,BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.3、B【解析】根据题中给出的函数图像结合一次函数性质得出a0,b0,再由反比例函数图像性质得出c0,从而可判断二次函数图像开口向下,对称轴:0,即在y轴的右边,与y轴负半轴相交,从而可得答案.【详解】解:一次函数y=ax+b图像过一、二、四, a0,b0, 又反比例 函数y=图像经过二、四象限, c0, 二次函
11、数对称轴:0, 二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键4、B【解析】试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,故选B.5、B【解析】可证明DFEBFA,根据相似三角形的面积之比等于相似比的平方即可得出答案【详解】四边形ABCD为平行四边形,DCAB,DFEBFA,DE:EC=3:1,DE:DC=3:4,DE:AB=3:4,SDFE:SBFA=9:1故选B6、A【解
12、析】4400000=4.41故选A点睛:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数7、D【解析】根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决【详解】由题意可得,去年二月份之前房价为:x(130%)(1+40%)=,故选:D【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式8、C【解析】解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位
13、置的数是5,平均数是:(3+4+5+6+6)5=4.8,故选C【点睛】本题考查众数;算术平均数;中位数9、C【解析】选项A,原式=-16;选项B,不能够合并;选项C,原式=;选项D,原式=.故选C.10、C【解析】科学记数法就是将一个数字表示成a10的n次幂的形式,其中1|a|10,n表示整数n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂【详解】数据8 600用科学记数法表示为8.6103故选C【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值1
14、时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零)二、填空题(本大题共6个小题,每小题3分,共18分)11、5【解析】由题意得, ,.原式 12、1【解析】先根据CD=20米,DE=10m得出DCE=30,故可得出DCB=90,再由BDF=30可知DBE=60,由DFAE可得出BGF=BCA=60,故GBF=30,所以DBC=30,再由锐角三角函数的定义即可得出结论【详解】解:作DFAB于F,交BC于G则四边形DEAF是矩形,DE=AF=15m,DFAE, BGF=BCA=60,BGF=GDB+GBD=60,GDB=30,GDB=GBD=30,GD=GB,在Rt
15、DCE中,CD=2DE,DCE=30,DCB=90,DGC=BGF,DCG=BFG=90DGCBGF,BF=DC=30m,AB=30+15=1(m),故答案为1【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键13、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案【详解】画树状图得: 共有12种等可能的结果,两次都摸到白球的有2种情况,两次都摸到白球的概率是:=.故答案为:.【点睛】本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.14、3.3081【解析】正确用科学计数法表示
16、即可.【详解】解:33080=3.3081【点睛】科学记数法的表示形式为的形式, 其中1|a|10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.15、n1(n为整数)【解析】试题分析:观察图形可得,第1个图形中阴影部分的面积=()0=1;第2个图形中阴影部分的面积=()1=;第3个图形中阴影部分的面积=()2=;第4个图形中阴影部分的面积=()3=;根据此规律可得第n个图形中阴影部分的面积=()n-1(n为整数)考点:图形规律探究题16、1【解析】过点C作CHA
17、B交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值【详解】如下图,过点C作CHAB交DE的延长线于点H,则,DFCH,同理,解得t1,t(舍去),故答案为:1【点睛】本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.三、解答题(共8题,共72分)17、(1)证明见解析(2)4-3【解析】试题分析:(1)根据等边三角形的性质,可得EOAC,即BDAC,根据平行四边形的对角线互相垂直可证菱形,(2) 根据平行四边形的对角线互相平分可得AO=CO,BO=DO,再根据EAC是等边三角形可以判定EOAC,并求出EA的长度,然后在RtABO中,利用勾
18、股定理列式求出BO的长度,即DO的长度,在RtAOE中,根据勾股定理列式求出EO的长度,再根据ED=EO-DO计算即可得解试题解析:(1) 四边形ABCD是平行四边形,AO=CO,DO=BO,EAC是等边三角形, EO是AC边上中线,EOAC,即BDAC,平行四边形ABCD是是菱形.(2) 平行四边形ABCD是是菱形,AO=CO=4,DO=BO,EAC是等边三角形,EA=AC=8,EOAC,在RtABO中,由勾股定理可得:BO=3,DO=BO=3,在RtEAO中,由勾股定理可得:EO=4ED=EO-DO=4-3.18、,63【解析】原式=,当a=,b=2时,原式19、(1)BEF60;A BE
19、F,证明见解析;(2)CBF周长的最小值5+5;(3)PB【解析】(1)当AEB为等边三角形时,AE B60,由折叠可得,BEF BE B 12060;依据AEBE,可得EA BE BA,再根据BEFBEF,即可得到BEFBA B,进而得出EFA B;(2)由折叠可得,CF+ BFCF+BFBC10,依据BE+ BCCE,可得BCCEBE55,进而得到BC最小值为55,故CBF周长的最小值10+555+5;(3)将ABB和APB分别沿AB、AC翻折到ABM和APN处,延长MB、NP相交于点Q,由MAN2BAC90,MN90,AMAN,可得四边形AMQN为正方形,设PBPNx,则BP6+x,BQ
20、862,QP8x依据BQP90,可得方程22+(8x)2(6+x)2,即可得出PB的长度【详解】(1)当AE B为等边三角形时,AE B60,由折叠可得,BEFBE B12060,故答案为60;A BEF,证明:点E是AB的中点,AEBE,由折叠可得BEBE,AEBE,EA BE BA,又BEFBEF,BEFBA B,EFA B;(2)如图,点B的轨迹为半圆,由折叠可得,BFBF,CF+ BFCF+BFBC10,BE+ BCCE,BCCEBE55,BC最小值为55,CBF周长的最小值10+555+5;(3)如图,连接A B,易得A BB90,将AB B和AP B分别沿AB、AC翻折到ABM和A
21、PN处,延长MB、NP相交于点Q,由MAN2BAC90,MN90,AMAN,可得四边形AMQN为正方形,由AB10,B B6,可得A B8,QMQNA B8,设P BPNx,则BP6+x,BQ862,QP8xBQP90,22+(8x)2(6+x)2,解得:x,P Bx【点睛】本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案20、证明见解析【解析】根据垂直的定义和直角三角形的全等判定,再利用全等三角形
22、的性质解答即可【详解】EAAB,ECBC,EAB=ECB=90,在RtEAB与RtECB中,RtEABRtECB,AB=CB,ABE=CBE,BD=BD,在ABD与CBD中,ABDCBD,AD=CD【点睛】本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键21、(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16【解析】(1)先求出OPA的面积为6时BP的长,再求出点P的坐标;(2)分别讨论AO=AP,AP=OP和AO=OP三种情况.【详解】(1)在y=-x+6中,令x=0,得y=6,令y=0,得x=8,A(0,6),B(8,0),OA=6,OB=
23、8,AB=10,AB边上的高为6810=,P点的运动时间为t,BP=t,则AP=,当AOP面积为6时,则有AP=6,即=6,解得t=7.5或12.5,过P作PEx轴,PFy轴,垂足分别为E、F,则PE=4.5或7.5,BE=6或10,则点P坐标为(8-6,4.5)或(8-10,7.5),即(2,4.5)或(-2,7.5);(2)由题意可知BP=t,AP=,当AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况当AP=AO时,则有=6,解得t=4或16;当AP=OP时,过P作PMAO,垂足为M,如图1,则M为AO中点,故P为AB中点,此时t=5;当AO=OP时,过O作ONAB,垂足
24、为N,过P作PHOB,垂足为H,如图2,则AN=AP=(10-t),PHAO,AOBPHB,=,即=,PH=t,又OAN+AON=OAN+PBH=90,AON=PBH,又ANO=PHB,ANOPHB,=,即=,解得t=;综上可知当t的值为、4、5和16时,AOP为等腰三角形22、610+4=82 4852+4 【解析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明【详解】解:(1)由题目中的式子可得,第个等式:610+4=82,故答案为610+4=82;(2)由题意可得,4852+4=5
25、02,故答案为4852+4;(3)第n个等式是:n(n+4)+4=(n+2)2,证明:n(n+4)+4=n2+4n+4=(n+2)2,n(n+4)+4=(n+2)2成立【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法23、(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).在中,.,(2).,即,201525CD.24、周瑜去世的年龄为16岁【解析】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1根据题意建立方程求出其值就可以求出其结论【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1由题意得;10(x1)+xx2,解得:x15,x26当x5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x6时,周瑜年龄为16岁,完全符合题意答:周瑜去世的年龄为16岁【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键