2022-2023学年吉林省长春市第七中学高考冲刺押题(最后一卷)数学试卷含解析.doc

上传人:茅**** 文档编号:87797033 上传时间:2023-04-17 格式:DOC 页数:19 大小:1.99MB
返回 下载 相关 举报
2022-2023学年吉林省长春市第七中学高考冲刺押题(最后一卷)数学试卷含解析.doc_第1页
第1页 / 共19页
2022-2023学年吉林省长春市第七中学高考冲刺押题(最后一卷)数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022-2023学年吉林省长春市第七中学高考冲刺押题(最后一卷)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年吉林省长春市第七中学高考冲刺押题(最后一卷)数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 “完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世

2、纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为( )ABCD2设M是边BC上任意一点,N为AM的中点,若,则的值为( )A1BCD3已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是( )ABCD4设,是两条不同的直线,是两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则;其中真命题的个数为( )ABCD5 “”是“,”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件6在中,分别为所对的边,若函数

3、有极值点,则的范围是( )ABCD7根据如图所示的程序框图,当输入的值为3时,输出的值等于( )A1BCD8已知为定义在上的偶函数,当时,则( )ABCD9关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数最后根据统计数来估计的值.若,则的估计值为( )ABCD10已知双曲线的一条渐近线方程为,则双曲线的离心率为( )ABCD11某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )A收入最高值与收入

4、最低值的比是B结余最高的月份是月份C与月份的收入的变化率与至月份的收入的变化率相同D前个月的平均收入为万元12定义,已知函数,则函数的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知, 是互相垂直的单位向量,若 与的夹角为60,则实数的值是_14已知x,y0,且,则x+y的最小值为_15已知集合,则_.16在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的准线方程为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.求椭圆的标准方程;直线与椭圆只有一个

5、公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.18(12分)己知,函数.(1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.19(12分)一种游戏的规则为抛掷一枚硬币,每次正面向上得2分,反面向上得1分.(1)设抛掷4次的得分为,求变量的分布列和数学期望.(2)当游戏得分为时,游戏停止,记得分的概率和为.求;当时,记,证明:数列为常数列,数列为等比数列.20(12分)已知椭圆的右顶点为,点在轴上,线段与椭圆的交点在第一象限,过点的直线与椭圆相切,且直线交轴于.设过点且平行于直线的直线交轴于点.()当为线段的中点时,求直线的方程;()记的面积

6、为,的面积为,求的最小值.21(12分)已知函数()的图象在处的切线为(为自然对数的底数)(1)求的值;(2)若,且对任意恒成立,求的最大值.22(10分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线交曲线于两点,为中点.(1)求曲线的直角坐标方程和点的轨迹的极坐标方程;(2)若,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事

7、件个数,根据即可求出6和28不在同一组的概率.【详解】解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,则基本事件总数为,则6和28恰好在同一组包含的基本事件个数,6和28不在同一组的概率.故选:C.【点睛】本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.2、B【解析】设,通过,再利用向量的加减运算可得,结合条件即可得解.【详解】设,则有.又,所以,有.故选B.【点睛】本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.3、C【解析】试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在

8、三角形中,由正弦定理得,所以,所以,故选C考点:1向量加减法的几何意义;2正弦定理;3正弦函数性质4、C【解析】利用线线、线面、面面相应的判定与性质来解决.【详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知正确;当直线平行于平面与平面的交线时也有,故错误;若,则垂直平面内以及与平面平行的所有直线,故正确;若,则存在直线且,因为,所以,从而,故正确.故选:C.【点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.5、B【解析】先求出满足的值,然后根据充分必要条件的定义判断【详解】由得,即, ,因此“”是“,”的必要不充分条件

9、故选:B【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础解题时可根据条件与结论中参数的取值范围进行判断6、D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.7、C【解析】根据程序图,当x0继续运行,x=1-2=-10,程序运行结束,得,故选C【点睛】本题考查程序框图,是基础题8、D【解析】判断,利用函数的奇偶性代入计算得到答

10、案.【详解】,故选:【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.9、B【解析】先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【详解】因为,都是区间上的均匀随机数,所以有,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.10、B【解析】由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【详解】双曲线的渐近线方程为,由题意可

11、得,因此,该双曲线的离心率为.故选:B.【点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.11、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误综上,故选12、A【解析】根据分段函数的定义得,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,则,(当且仅当,即时“”成立.此时,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,

12、再由基本不等式求得最值,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出的值【详解】解:由题意,设(1,0),(0,1),则(,1),(1,);又夹角为60,()()2cos60,即,解得【点睛】本题考查了单位向量和平面向量数量积的运算问题,是中档题14、1【解析】处理变形x+yx()+y结合均值不等式求解最值.【详解】x,y0,且,则x+yx()+y1,当且仅当时取等号,此时x4,y2,取得最小值1故答案为:1【点睛】此题考查利用均值不等式求解最值,关键在于熟练掌握均值不等式的适用条件,注意考虑等号成立

13、的条件.15、【解析】根据交集的定义即可写出答案。【详解】,故填【点睛】本题考查集合的交集,需熟练掌握集合交集的定义,属于基础题。16、【解析】代入求解得,再求准线方程即可.【详解】解:双曲线经过点,解得,即又,故该双曲线的准线方程为: 故答案为:【点睛】本题主要考查了双曲线的准线方程求解,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;.【解析】连接,由三角形相似得,进而得出,写出椭圆的标准方程;由得,因为直线与椭圆相切于点,解得,因为点在第二象限,所以,所以,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,求出面积的取值范围.【详解】解:连接,

14、由可得,椭圆的标准方程;由得,因为直线与椭圆相切于点,所以,即,解得,即点的坐标为,因为点在第二象限,所以,所以,所以点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,当且仅当,即时,有最大值,所以,即面积的取值范围为.【点睛】本题考查直线和椭圆位置关系的应用,利用基本不等式,属于难题.18、(1);(2)【解析】(1)零点分段解不等式即可(2)等价于,由,得不等式即可求解【详解】(1)当时,当时,由,解得;当时,由,解得;当时,由,解得.综上可知,原不等式的解集为.(2).存在使得成立,等价于.又因为,所以,即.解得,结合,所以实数的取值范围为.【点睛】本题考查绝对值不

15、等式的解法,考查不等式恒成立及最值,考查转化思想,是中档题19、(1)分布列见解析,数学期望为6;(2);证明见解析【解析】(1)变量的所有可能取值为4,5,6,7,8,分别求出对应的概率,进而可求出变量的分布列和数学期望;(2)得2分只需要抛掷一次正面向上或两次反面向上,分别求出两种情况的概率,进而可求得;得分分两种情况,第一种为得分后抛掷一次正面向上,第二种为得分后抛掷一次反面向上,可知当且时,结合,可推出,从而可证明数列为常数列;结合,可推出,进而可证明数列为等比数列.【详解】(1)变量的所有可能取值为4,5,6,7,8.每次抛掷一次硬币,正面向上的概率为,反面向上的概率也为,则,.所以

16、变量的分布列为:45678故变量的数学期望为.(2)得2分只需要抛掷一次正面向上或两次反面向上,概率的和为.得分分两种情况,第一种为得分后抛掷一次正面向上,第二种为得分后抛掷一次反面向上,故且时,有,则时,所以,故数列为常数列;又,所以数列为等比数列.【点睛】本题考查离散型随机变量的分布列及数学期望,考查常数列及等比数列的证明,考查学生的计算求解能力与推理论证能力,属于中档题.20、()直线的方程为()【解析】(1)设点,利用中点坐标公式表示点B,并代入椭圆方程解得,从而求出直线的方程;(2)设直线的方程为:,表示点,然后联立方程,利用相切得出,然后求出切点,再设出设直线的方程,求出点,利用两

17、点坐标,求出直线的方程,从而求出,最后利用以上已求点的坐标表示面积,根据基本不等式求最值即可.【详解】解:()由椭圆,可得:由题意:设点,当为的中点时,可得:代入椭圆方程,可得:所以:所以.故直线的方程为.()由题意,直线的斜率存在且不为0,故设直线的方程为:令,得:,所以:.联立:,消,整理得:.因为直线与椭圆相切,所以.即.设,则,所以.又直线直线,所以设直线的方程为:.令,得,所以:.因为,所以直线的方程为:.令,得,所以:.所以.又因为.所以(当且仅当,即时等号成立)所以.【点睛】本小题主要考查直线和椭圆的位置关系,考查直线方程以及求椭圆中的最值问题,最值问题一般是把目标式求出,结合目

18、标式特点选用合适的方法求解,侧重考查数学运算的核心素养,本题利用了基本不等式求最小值的方法,运算量较大,属于难题.21、 (1)a=-1,b=1;(2)-1.【解析】(1)对求导得,根据函数的图象在处的切线为,列出方程组,即可求出的值;(2)由(1)可得,根据对任意恒成立,等价于对任意恒成立,构造,求出的单调性,由,可得存在唯一的零点,使得,利用单调性可求出,即可求出的最大值.(1),.由题意知. (2)由(1)知:,对任意恒成立对任意恒成立对任意恒成立. 令,则.由于,所以在上单调递增. 又,所以存在唯一的,使得,且当时,时,. 即在单调递减,在上单调递增.所以.又,即,. . , . 又因

19、为对任意恒成立,又, . 点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.22、(1),;(2)或【解析】(1)根据曲线的参数方程消去参数,可得曲线的直角坐标方程,再由,可得点的轨迹的极坐标方程;(2)将曲线极坐标方程求,与直线极坐标方程联立,消去,得到关于的二次方程,由的几何意义可求出,而(1)可知,然后列方程可求出的值.【详解】(1)曲线的直角坐标方程为,圆的圆心为,设,所以,则由,即为点轨迹的极坐标方程.(2)曲线的极坐标方程为,将与曲线的极坐标方程联立得,设,所以,由,即,令,上述方程可化为,解得.由,所以,即或.【点睛】此题考查参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,利用极坐标求点的轨迹方程,考查运算求解能力,考查数形结合思想,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁