《2022-2023学年广东省阳江市重点中学高三六校第一次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省阳江市重点中学高三六校第一次联考数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1己知,则( )ABCD2设点,不共线,则“”是“”( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分又不必要条件3设为等差数列的前项和,若,则ABCD4设、,数列满足,则( )A对于任意,都存在实数,使得恒成立B对于任意,都存在实数
2、,使得恒成立C对于任意,都存在实数,使得恒成立D对于任意,都存在实数,使得恒成立5已知集合,则( )ABCD6已知,则的大小关系是( )ABCD7已知函数的图像的一条对称轴为直线,且,则的最小值为( )AB0CD8已知随机变量服从正态分布,( )ABCD9已知满足,,则在上的投影为()ABCD210若样本的平均数是10,方差为2,则对于样本,下列结论正确的是( )A平均数为20,方差为4B平均数为11,方差为4C平均数为21,方差为8D平均数为20,方差为811已知单位向量,的夹角为,若向量,且,则( )A2B2C4D612把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移
3、个单位,那么所得图象的一个对称中心为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列满足,若,则数列的前n项和_14已知实数满足,则的最小值是_.15若复数满足,其中是虚数单位,是的共轭复数,则_.16已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点A,B,C,D若ABBC,则实数t的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,三棱柱中,侧面为菱形,.(1)求证:平面;(2)若,求二面角的余弦值.18(12分)如图,在四棱锥中,底面是直角梯形,是正三角形,是的中点.(1)证明:;(2)求直线与平面所成角的正弦值.
4、19(12分)已知函数,.(1)若不等式对恒成立,求的最小值;(2)证明:.(3)设方程的实根为.令若存在,使得,证明:.20(12分)已知关于的不等式解集为().(1)求正数的值;(2)设,且,求证:.21(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.(1)当时,求与的交点的极坐标;(2)直线与曲线交于,两点,线段中点为,求的值.22(10分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402
5、.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)建立月总成本与月产量之间的回归方程;通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:参考数据:,.参考公式:相关系数,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先将三个数通过指数,对数运算变形,再判断.【详解】因为,所以,故选:B.【点睛】本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档
6、题.2、C【解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.3、C【解析】根据等差数列的性质可得,即,所以,故选C4、D【解析】取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.【详解】取,数列恒单调递增,且不存在最大值,故排除AB选项;由蛛网图可知,存在两个不动点,且,因为当时,数列单调递增,则;当时,数列单调递减,则;所以要使,只需要,故,化简得且.故选:D【点睛】本
7、题考查递推数列的综合运用,考查逻辑推理能力,属于难题5、B【解析】求出集合,利用集合的基本运算即可得到结论.【详解】由,得,则集合,所以,.故选:B.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.6、B【解析】利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.【详解】依题意,函数与函数关于直线对称,则,即,又,所以,.故选:B.【点睛】本题主要考查对数、指数的大小比较,属于基础题.7、D【解析】运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函
8、数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,所以,当时,的最小值,故选D.【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8、B【解析】利用正态分布密度曲线的对称性可得出,进而可得出结果.【详解】,所以,.故选:B.【点睛】本题考查利用正态分布密度曲线的对称性求概率,属于基础题.9、A【解析】根据向量投影的定义,即可求解.【详解】在上的投影为.故选:A【点睛】本题考查向量的投影,属于基础题.1
9、0、D【解析】由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【点睛】样本的平均数是,方差为,则的平均数为,方差为.11、C【解析】根据列方程,由此求得的值,进而求得.【详解】由于,所以,即,解得.所以所以.故选:C【点睛】本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.12、D【解析】试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.
10、二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,求得的通项,进而求得,得通项公式,利用等比数列求和即可.【详解】由题为等差数列,,故答案为【点睛】本题考查求等差数列数列通项,等比数列求和,熟记等差等比性质,熟练运算是关键,是基础题.14、【解析】先画出不等式组对应的可行域,再利用数形结合分析解答得解.【详解】画出不等式组表示的可行域如图阴影区域所示.由题得y=-3x+z,它表示斜率为-3,纵截距为z的直线系,平移直线,易知当直线经过点时,直线的纵截距最小,目标函数取得最小值,且.故答案为:-8【点睛】本题主要考查线性规划问题,意在考查学生对这些知识的理解掌握水平和数形结合分析能
11、力.15、【解析】设,代入已知条件进行化简,根据复数相等的条件,求得的值.【详解】设,由,得,所以,所以.故答案为:【点睛】本小题主要考查共轭复数,考查复数相等的条件,属于基础题.16、【解析】由是偶函数可得时恒有,根据该恒等式即可求得,的值,从而得到,令,可解得,三点的横坐标,根据可列关于的方程,解出即可【详解】解:因为是偶函数,所以时恒有,即,所以,所以,解得,;所以;由,即,解得;故,由,即,解得故,因为,所以,即,解得,故答案为:【点睛】本题考查函数奇偶性的性质及二次函数的图象、性质,考查学生的计算能力,属中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)
12、见解析(2)【解析】(1)根据菱形性质可知,结合可得,进而可证明,即,即可由线面垂直的判定定理证明平面;(2)结合(1)可证明两两互相垂直.即以为坐标原点,的方向为轴正方向,为单位长度,建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可求得二面角的余弦值.【详解】(1)证明:设,连接,如下图所示:侧面为菱形,且为及的中点, 又,则为直角三角形,又,即,而为平面内的两条相交直线,平面.(2)平面,平面,即,从而两两互相垂直.以为坐标原点,的方向为轴正方向,为单位长度,建立如图的空间直角坐标系,为等边三角形, ,设平面的法向量为,则,即,可取,设平面的法向量为,则.同理可取,由图
13、示可知二面角为锐二面角,二面角的余弦值为.【点睛】本题考查了线面垂直的判定方法,利用空间向量方法求二面角夹角的余弦值,注意建系时先证明三条两两垂直的直线,属于中档题.18、(1)见证明;(2)【解析】(1)设是的中点,连接、,先证明是平行四边形,再证明平面,即(2)以为坐标原点,的方向为轴的正方向,建空间直角坐标系,分别计算各个点坐标,计算平面法向量,利用向量的夹角公式得到直线与平面所成角的正弦值.【详解】(1)证明:设是的中点,连接、,是的中点, ,是平行四边形,由余弦定理得,平面,;(2)由(1)得平面,平面平面,过点作,垂足为,平面,以为坐标原点,的方向为轴的正方向,建立如图的空间直角坐
14、标系,则,设是平面的一个法向量,则,令,则,直线与平面所成角的正弦值为.【点睛】本题考查了线面垂直,线线垂直,利用空间直角坐标系解决线面夹角问题,意在考查学生的空间想象能力和计算能力.19、(1)(2)证明见解析(3)证明见解析【解析】(1)由题意可得,令,利用导数得在上单调递减,进而可得结论;(2)不等式转化为,令,利用导数得单调性即可得到答案;(3)由题意可得,进而可将不等式转化为,再利用单调性可得,记,再利用导数研究单调性可得在上单调递增,即,即,即可得到结论.【详解】(1),即,化简可得.令,因为,所以,.所以,在上单调递减,.所以的最小值为.(2)要证,即.两边同除以可得.设,则.在
15、上,所以在上单调递减.在上,所以在上单调递增,所以.设,因为在上是减函数,所以.所以,即.(3)证明:方程在区间上的实根为,即,要证,由可知,即要证.当时,因而在上单调递增.当时,因而在上单调递减.因为,所以,要证.即要证.记,.因为,所以,则.设,当时,.时,故.且,故,因为,所以.因此,即在上单调递增.所以,即.故得证.【点睛】本题考查函数的单调性、最值、函数恒成立问题,考查导数的应用,转化思想,构造函数研究单调性,属于难题.20、(1)1;(2)证明见解析.【解析】(1)将不等式化为,求解得出,根据解集确定正数的值;(2)利用基本不等式以及不等式的性质,得出,三式相加,即可得证.【详解】
16、(1)解:不等式,即不等式,而,于是依题意得(2)证明:由(1)知,原不等式可化为,同理,三式相加得,当且仅当时取等号综上.【点睛】本题主要考查了求绝对值不等式中参数的范围以及基本不等式的应用,属于中档题.21、(1),;(2)【解析】(1)依题意可知,直线的极坐标方程为(),再对分三种情况考虑;(2)利用直线参数方程参数的几何意义,求弦长即可得到答案.【详解】(1)依题意可知,直线的极坐标方程为(),当时,联立解得交点,当时,经检验满足两方程,(易漏解之处忽略的情况)当时,无交点;综上,曲线与直线的点极坐标为,(2)把直线的参数方程代入曲线,得,可知,所以.【点睛】本题考查直线与曲线交点的极坐标、利用参数方程参数的几何意义求弦长,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.22、(1)见解析;(2)3.386(万元)【解析】(1)利用代入数值,求出后即可得解;(2)计算出、后,利用求出后即可得解;把代入线性回归方程,计算即可得解.【详解】(1)由已知条件得,说明与正相关,且相关性很强.(2)由已知求得,所以,所求回归直线方程为.当时,(万元),此时产品的总成本约为3.386万元.【点睛】本题考查了相关系数的应用以及线性回归方程的求解和应用,考查了计算能力,属于中档题.