《2022-2023学年安徽省滁州来安县中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年安徽省滁州来安县中考四模数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图是二次函数图象的一部分,其对称轴为x=1,且过点(3,0)下列说法:abc0;1ab=0;4a+1b+c0;若(5,y1),(,y1)是抛物线上两点,则y1y1其中说法正确的是( )A B C D2如图,若ABCD,CDEF,那么BCE( )A12B21C18012D180213解分式方程3=时,去分母可得()A13(x2)=4B13(x2)=4C13(2x)=4D13(2x)=44股市有风险,投资需谨慎截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )A9.5106B9
3、.5107C9.5108D9.51095若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则()Am1Bm1Cm1Dm16下列判断错误的是()A两组对边分别相等的四边形是平行四边形B四个内角都相等的四边形是矩形C两条对角线垂直且平分的四边形是正方形D四条边都相等的四边形是菱形7据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A9.29109B9.291010C92.91010D9.2910118实数4的倒数是()A4BC4D9下列图标中,是中心对称图形的是()ABCD102014年我省财政收入比2013年增长8.9%,2
4、015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM若BAD=120,AE=2,则DM=_12如图,四边形OABC中,ABOC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若BDE、OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_.13若与是同类项,则的立方根是 14抛物线(为非
5、零实数)的顶点坐标为_.15RtABC中,AD为斜边BC上的高,若, 则 16如图,一次函数y1=kx+b的图象与反比例函数y2=(x0,即得m的取值范围.【详解】因为方程是关于x的一元二次方程方程,所以可得,4+4m 0,解得m1,故选D.【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键.6、C【解析】根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,对选项进行判断即可【详解】解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;B、四个内角都相等的四边形是矩形,故本选项正确;C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;D、四条边都相等的四
6、边形是菱形,故本选项正确故选C【点睛】此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键7、B【解析】科学记数法的表示形式为a1n的形式,其中1|a|1,n为整数确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1【详解】解:929亿=92900000000=9.2911故选B【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键8、B【解析】根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可【详解】解:实数4的倒数是:14=故选:B【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明
7、确:互为倒数的两个数的乘积是19、B【解析】根据中心对称图形的概念 对各选项分析判断即可得解【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合10、C【解析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式【详解】2013年我省财政收入为a亿元
8、,2014年我省财政收入比2013年增长8.9%,2014年我省财政收入为a(1+8.9%)亿元,2015年比2014年增长9.5%,2015年我省财政收为b亿元,2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C【点睛】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题二、填空题(共7小题,每小题3分,满分21分)11、【解析】作辅助线,构建直角DMN,先根据菱形的性质得:DAC=60,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长【详解】解:过M作MNAD于N,四边形ABCD是菱形, EFAC,AE=AF=2,
9、AFM=30,AM=1,RtAMN中,AMN=30, AD=AB=2AE=4, 由勾股定理得: 故答案为【点睛】本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30所对的直角边是斜边的一半12、16【解析】根据题意得SBDE:SOCE=1:9,故BD:OC=1:3,设D(a,b)则A(a,0),B(a,2b),得C(0,3b),由SOCE=9得ab=8,故可得解.【详解】解:设D(a,b)则A(a,0),B(a,2b)SBDE:SOCE=1:9BD:OC=1:3C(0,3b)COE高是OA的,SOCE=3ba =9解得ab=8k=a2b=2a
10、b=28=16故答案为16.【点睛】此题利用了:过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式13、2【解析】试题分析:若与是同类项,则:,解方程得:=23(2)=8.8的立方根是2故答案为2考点:2立方根;2合并同类项;3解二元一次方程组;4综合题14、【解析】【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标.【详解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2 +1-m,所以抛物线的顶点坐标为(-1,1-m),故答案为(-1,1-m).【点睛】本题考查了抛物线的顶点坐标,把抛物线的解
11、析式转化为顶点式是解题的关键.15、【解析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题【详解】如图,CAB=90,且ADBC,ADB=90,CAB=ADB,且B=B,CABADB,(AB:BC)1=ADB:CAB,又SABC=4SABD,则SABD:SABC=1:4,AB:BC=1:116、-2x-0.5【解析】根据图象可直接得到y1y20时x的取值范围【详解】根据图象得:当y1y20时,x的取值范围是2x0.5,故答案为2x0.5.【点睛】本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键17、(
12、-1,2)【解析】因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P点,然后求得平移后的直线,联立方程,解方程即可【详解】因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,若直线向上平移与抛物线相切,切点即为P点,设平移后的直线为y=-x-2+b,直线y=-x-2+b与抛物线y=x2+x+2相切,x2+x+2=-x-2+b,即x2+2x+4-b=0,则=4-4(4-b)=0,b=3,平移后的直线为y=-x+1,解得x=-1,y=2,P点坐标为(-1,2),故答案为(-1,2)【点睛】本题主要考查了二次函数图象上点的坐标特征,三角形的面积以
13、及解方程等,理解直线向上平移与抛物线相切,切点即为P点是解题的关键三、解答题(共7小题,满分69分)18、(1)5;(2)1或1【解析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a-b)2+2(a+b)可得(a-b)2+24=17,据此进一步计算可得【详解】(1)原式=ab+a+b+1ab=a+b+1,当a+b=4时,原式=4+1=5;(2)a22ab+b2+2a+2b=(ab)2+2(a+b),(ab)2+24=17,(ab)2=9,则ab=1或1【点睛】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用19、(1)25,
14、90;(2)见解析;(3)该市 “活动时间不少于5天”的大约有1【解析】试题分析:(1)根据扇形统计图的特征即可求得的值,再乘以360即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90;(2)“活动时间为6天” 的人数,如图所示:(3)“活动时间不少于5天”的学生人数占75%,2000075%=1该市“活动时间不少于5天”的大约有1人考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.20、(1)(2)(0,-1)
15、(3)(1,0)(9,0)【解析】(1)将A(1,0)、C(0,3)两点坐标代入抛物线yax2bx3a中,列方程组求a、b的值即可;(2)将点D(m,m1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D的坐标;(3)分两种情形过点C作CPBD,交x轴于P,则PCBCBD,连接BD,过点C作CPBD,交x轴于P,分别求出直线CP和直线CP的解析式即可解决问题【详解】解:(1)将A(1,0)、C(0,3)代入抛物线yax2bx3a中,得 ,解得 yx22x3;(2)将点D(m,m1)代入yx22x3中,得m22m3m1,解得m2或1,点D(m,m1)在第四象限,D(
16、2,3),直线BC解析式为yx3,BCDBCO45,CDCD2,OD321,点D关于直线BC对称的点D(0,1);(3)存在满足条件的点P有两个过点C作CPBD,交x轴于P,则PCBCBD,直线BD解析式为y3x9,直线CP过点C,直线CP的解析式为y3x3,点P坐标(1,0),连接BD,过点C作CPBD,交x轴于P,PCBDBC,根据对称性可知DBCCBD,PCBCBD,直线BD的解析式为直线CP过点C,直线CP解析式为,P坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0)【点睛】本题考查了二次函数的综合运用关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特
17、殊性求点的坐标,学会分类讨论,不能漏解21、(1)证明见解析;(2);(3)证明见解析.【解析】(1)连接OA,证明DABDAE,得到ABAE,得到OA是BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明CDFAOF,根据相似三角形的性质得到CDCE,根据等腰三角形的性质证明【详解】(1)证明:连接OA,由圆周角定理得,ACBADB,ADEACB,ADEADB,BD是直径,DABDAE90,在DAB和DAE中, ,DABDAE,ABAE,又OBOD,OADE,又AHDE,OAAH,AH是O的切线;(2)解:由(1)知,EDBE,DBEACD,EACD
18、,AEACAB1在RtABD中,AB1,BD8,ADEACB,sinADB,即sinACB;(3)证明:由(2)知,OA是BDE的中位线,OADE,OADECDFAOF,CDOADE,即CDCE,ACAE,AHCE,CHHECE,CDCH,CDDH【点睛】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键22、 (1)详见解析;(2).【解析】(1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;(2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解【详
19、解】(1)如图,DE、DF为所作;(2)C=90,A=30,ABC=10,AB=2BC=2BD为ABC的角平分线,DBC=EBD=30EF垂直平分BD,FB=FD,EB=ED,FDB=DBC=30,EDB=EBD=30,DEBF,BEDF,四边形BEDF为平行四边形,而FB=FD,四边形BEDF为菱形DFC=FBD+FDB=30+30=10,FDC=9010=30在RtBDC中,BC=1,DBC=30,DC=在RtFCD中,FDC=30,FC=2,FD=2FC=4,BF=FD=4,四边形BFDE的面积=42=8故答案为:8【点睛】本题考查了作图基本作图:熟练掌握基本作图(作一条线段等于已知线段
20、;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)23、当x=3时,原式=,当x=2时,原式=1【解析】先化简分式,再解不等式组求得x的取值范围,在此范围内找到符合分式有意义的x的整数值,代入计算可得【详解】原式=,解不等式组,解不等式,得:x4,解不等式,得:x1,不等式组的解集为4x1,不等式的整数解是3,2,1又x+10,x10x1,x=3或x=2,当x=3时,原式=,当x=2时,原式=1【点睛】本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.24、解:(1)10,50;(2)解法一(树状
21、图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)= ;解法二(列表法):(以下过程同“解法一”)【解析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回)即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元);解法二(列表法):01020300102030101030402020305030304050从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元);考点:列表法与树状图法.【详解】请在此输入详解!