2022-2023学年天津市宝坻区高三第五次模拟考试数学试卷含解析.doc

上传人:茅**** 文档编号:87796810 上传时间:2023-04-17 格式:DOC 页数:21 大小:2.34MB
返回 下载 相关 举报
2022-2023学年天津市宝坻区高三第五次模拟考试数学试卷含解析.doc_第1页
第1页 / 共21页
2022-2023学年天津市宝坻区高三第五次模拟考试数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2022-2023学年天津市宝坻区高三第五次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年天津市宝坻区高三第五次模拟考试数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知(),i为虚数单位,则( )AB3C1D52设复数满足为虚数单位),则( )ABCD3如图,平面与平面相交于,点,点,则下列叙述错误的是( )A直线与异面B过只有唯一平面与平行C过点只能

2、作唯一平面与垂直D过一定能作一平面与垂直4已知双曲线的左、右焦点分别为,点P是C的右支上一点,连接与y轴交于点M,若(O为坐标原点),则双曲线C的渐近线方程为( )ABCD5已知函数()的部分图象如图所示.则( )ABCD6已知复数(为虚数单位),则下列说法正确的是( )A的虚部为B复数在复平面内对应的点位于第三象限C的共轭复数D7若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为( )AB2CD8已知 若在定义域上恒成立,则的取值范围是( )ABCD9设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是( )ABCD10在三棱锥中,点

3、到底面的距离为2,则三棱锥外接球的表面积为( )ABCD11已知函数,其中,其图象关于直线对称,对满足的,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()ABCD12设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知三棱锥中,则该三棱锥的外接球的表面积是_.14将函数的图象向左平移个单位长度,得到一个偶函数图象,则_15平面向量,(R),且与的夹角等于与的夹角,则 .16设集合,(其中e是自然对数的底数),且,则满足条件的实数a的个数为_三、解答题:共70分。解答应写出文字说

4、明、证明过程或演算步骤。17(12分)2019年是中华人民共和国成立70周年为了让人民了解建国70周年的风雨历程,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,并绘制了如图所示的频率分布直方图(1)现从年龄在,内的人员中按分层抽样的方法抽取8人,再从这8人中随机选取3人进行座谈,用表示年龄在)内的人数,求的分布列和数学期望;(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为当最大时,求的值18(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次

5、,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.19(12分)如图1,在边长为4的正方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.(1)

6、求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.20(12分)(1)求曲线和曲线围成图形的面积;(2)化简求值:21(12分)已知抛物线和圆,倾斜角为45的直线过抛物线的焦点,且与圆相切(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设求证点在定直线上,并求该定直线的方程22(10分)如图所示,四棱柱中,底面为梯形,.(1)求证:;(2)若平面平面,求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用复数代数形式的乘法运算化简得答案.【详解】由,得,解得.故选:C

7、.【点睛】本题考查复数代数形式的乘法运算,是基础题.2、B【解析】易得,分子分母同乘以分母的共轭复数即可.【详解】由已知,所以.故选:B.【点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.3、D【解析】根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾, 故正确.B. 根据异面直线的性质知,过只有唯一平面与平行,故正确.C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.D. 根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【点睛】本题主要考查异

8、面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.4、C【解析】利用三角形与相似得,结合双曲线的定义求得的关系,从而求得双曲线的渐近线方程。【详解】设,由,与相似,所以,即,又因为,所以,所以,即,所以双曲线C的渐近线方程为.故选:C.【点睛】本题考查双曲线几何性质、渐近线方程求解,考查数形结合思想,考查逻辑推理能力和运算求解能力。5、C【解析】由图象可知,可解得,利用三角恒等变换化简解析式可得,令,即可求得.【详解】依题意,即,解得;因为所以,当时,.故选:C.【点睛】本题主要考查了由三角函数的图象求解析式和已知函数值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一

9、般.6、D【解析】利用的周期性先将复数化简为即可得到答案.【详解】因为,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.7、D【解析】利用复数代数形式的乘除运算化简,再由实部为求得值【详解】解:在复平面内所对应的点在虚轴上,即故选D【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题8、C【解析】先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等

10、式,即可解得实数的取值范围.【详解】,先解不等式.当时,由,得,解得,此时;当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,则,此时;当时,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.9、A【解析】设坐标,根据向量坐标运算表示出,从而可利用表示出;由坐标运算表示出,代入整理可得所求的轨迹方程.【详解】设,其中, ,即 关于轴对称 故选:【点睛】本题考查动点轨迹方程的求解,涉及到平面向量的

11、坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程.10、C【解析】首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,为的中点由球的性质可知:平面,且设,在中,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为故选:.【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.11、B【解

12、析】根据已知得到函数两个对称轴的距离也即是半周期,由此求得的值,结合其对称轴,求得的值,进而求得解析式.根据图像变换的知识求得的解析式,再利用三角函数求单调区间的方法,求得的单调递减区间.【详解】解:已知函数,其中,其图像关于直线对称,对满足的,有,.再根据其图像关于直线对称,可得,.,.将函数的图像向左平移个单位长度得到函数的图像.令,求得,则函数的单调递减区间是,故选B.【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.12、D【解析】根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求

13、得的值.【详解】函数(,)是上的奇函数,则,所以.又的图象关于直线对称可得,即,由函数的单调区间知,即,综上,则,.故选:D【点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将三棱锥补成长方体,设,设三棱锥的外接球半径为,求得的值,然后利用球体表面积公式可求得结果.【详解】将三棱锥补成长方体,设,设三棱锥的外接球半径为,则,由勾股定理可得,上述三个等式全部相加得,因此,三棱锥的外接球面积为.故答案为:.【点睛】本题考查三棱锥外接球表面积的计算,根据三棱锥对棱长相等将三棱锥补成长方体是解答

14、的关键,考查推理能力,属于中等题.14、【解析】根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称 即: 本题正确结果:【点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.15、2【解析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角16、【解析】可看出,这样根据即可得出,从而得出满足条件的实数的个数为1【详解】解:,或,在同一平面直角坐标系中画出函数与的图象,由图可知与无交点, 无解,则满足条件的实数的个

15、数为故答案为:【点睛】考查列举法的定义,交集的定义及运算,以及知道方程无解,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列见解析,(1)【解析】(1)根据频率分布直方图及抽取总人数,结合各组频率值即可求得各组抽取的人数;的可能取值为0,1,1,由离散型随机变量概率求法即可求得各概率值,即可得分布列;由数学期望公式即可求得其数学期望.(1)先求得年龄在内的频率,视为概率.结合二项分布的性质,表示出,令,化简后可证明其单调性及取得最大值时的值【详解】(1)按分层抽样的方法拉取的8人中,年龄在的人数为人,年龄在内的人数为人年龄在内的人数为人所以的可能取值为

16、0,1,1所以,所以的分市列为011 (1)设在抽取的10名市民中,年龄在内的人数为,服从二项分布由频率分布直方图可知,年龄在内的频率为,所以,所以设,若,则,;若,则,所以当时,最大,即当最大时,【点睛】本题考差了离散型随机变量分布列及数学期望的求法,二项分布的综合应用,属于中档题.18、(1)分布见解析,期望为;(2).【解析】(1)先明确X的可能取值,分别求解其概率,然后写出分布列,利用期望公式可求期望;(2)获得的奖金恰好为60元,可能是三次二等奖,也可能是一次一等奖,两次三等奖,然后分别求解概率即可.【详解】(1)由题意知,随机变量X的可能取值为10,20,40且,所以,即随机变量X

17、的概率分布为X102040P所以随机变量X的数学期望.(2)由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因为60203401010,所以【点睛】本题主要考查随机变量的分布列及数学期望,明确随机变量的所有取值是求解的第一步,再求解对应的概率,侧重考查数学建模的核心素养.19、(1)证明见解析;(2).【解析】(1)利用线面平行的定义证明即可(2)取的中点,并分别连接,然后,证明相应的线面垂直关系,分别以,为轴,轴,轴建立空间直角坐标系,利用坐标运算进行求解即可【详解】证明:(1)在图1中,连接.又,分别为,中点,所以.即图2中有.又平面,平面,所以平面.解:(2)在图2中,取的中点,

18、并分别连接,.分析知,.又平面平面,平面平面,平面,所以平面.又,所以,.分别以,为轴,轴,轴建立如图所示的空间直角坐标系,则,所以,.设平面的一个法向量,则,取,则,所以.又,所以.分析知,直线与平面所成角的正弦值为.【点睛】本题考查线面平行的证明以及利用空间向量求解线面角问题,属于基础题20、(1)(2)【解析】(1)求曲线和曲线围成的图形面积,首先求出两曲线交点的横坐标0、1,然后求在区间上的定积分(2)首先利用二倍角公式及两角差的余弦公式计算出,然后再整体代入可得;【详解】解:(1)联立解得,所以曲线和曲线围成的图形面积(2)【点睛】本题考查定积分求曲边形的面积以及三角恒等变换的应用,

19、属于中档题.21、(1);(2)点在定直线上【解析】(1)设出直线的方程为,由直线和圆相切的条件:,解得;(2)设出,运用导数求得切线的斜率,求得为切点的切线方程,再由向量的坐标表示,可得在定直线上;【详解】解:(1)依题意设直线的方程为,由已知得:圆的圆心,半径,因为直线与圆相切,所以圆心到直线的距离,即,解得或(舍去)所以;(2)依题意设,由(1)知抛物线方程为,所以,所以,设,则以为切点的切线的斜率为,所以切线的方程为令,即交轴于点坐标为,所以, ,设点坐标为,则,所以点在定直线上【点睛】本题考查抛物线的方程和性质,直线与圆的位置关系的判断,考查直线方程和圆方程的运用,以及切线方程的求法

20、,考查化简整理的运算能力,属于综合题22、(1)证明见解析(2)【解析】(1)取中点为,连接,根据线段关系可证明为等边三角形,即可得;由为等边三角形,可得,从而由线面垂直判断定理可证明平面,即可证明.(2)以为原点,为,轴建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【详解】(1)证明:取中点为,连接,如下图所示:因为,所以,故为等边三角形,则.连接,因为,所以为等边三角形,则.又,所以平面.因为平面,所以.(2)由(1)知,因为平面平面,平面,所以平面,以为原点,为,轴建立如图所示的空间直角坐标系,易求,则,则,.设平面的法向量,则即令,则,故.设平面的法向量,则则令,则,故,所以.由图可知,二面角为钝二面角角,所以二面角的余弦值为.【点睛】本题考查线面垂直的判定,由线面垂直判定线线垂直,由空间向量法求平面与平面形成二面角的大小,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁