《2022-2023学年天津市南开中学高三第三次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年天津市南开中学高三第三次模拟考试数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 “完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“
2、完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为( )ABCD2若复数z满足,则( )ABCD3若复数满足,复数的共轭复数是,则( )A1B0CD4已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是( )ABCD5已知,若,则实数的值是()A-1B7C1D1或76已知命题若,则,则下列说法正确的是( )A命题是真命题B命题的逆命题是真命题C命题的否命题是“若,则”D命题的逆否命题是“若,则”7若函数在处有极值,则在区间上的最大值为( )AB2C1D38已知函数()的部分图象如图所示,且,则的最小值为( )ABCD9设,则( )ABCD10点为棱长是2的正方体
3、的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为( )ABCD11 “”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件12设复数满足,在复平面内对应的点为,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若变量,满足约束条件则的最大值为_.14已知, 是互相垂直的单位向量,若 与的夹角为60,则实数的值是_15已知向量满足,且,则 _16若四棱锥的侧面内有一动点Q,已知Q到底面的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角平面角的大小为时,k的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或
4、演算步骤。17(12分)如图,已知椭圆,为其右焦点,直线与椭圆交于两点,点在上,且满足.(点从上到下依次排列)(I)试用表示:(II)证明:原点到直线l的距离为定值.18(12分)已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.(1)证明:当取得最小值时,椭圆的离心率为.(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.19(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作
5、了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,20(12分)在四棱锥中,底面是平行四边形,底面(1)证明:;(2)求二面角的正弦值
6、21(12分)设函数().(1)讨论函数的单调性;(2)若关于x的方程有唯一的实数解,求a的取值范围.22(10分)唐诗是中国文学的瑰宝.为了研究计算机上唐诗分类工作中检索关键字的选取,某研究人员将唐诗分成7大类别,并从全唐诗48900多篇唐诗中随机抽取了500篇,统计了每个类别及各类别包含“花”、“山”、“帘”字的篇数,得到下表:爱情婚姻咏史怀古边塞战争山水田园交游送别羁旅思乡其他总计篇数100645599917318500含“山”字的篇数5148216948304271含“帘”字的篇数2120073538含“花”字的篇数606141732283160(1)根据上表判断,若从全唐诗含“山”字
7、的唐诗中随机抽取一篇,则它属于哪个类别的可能性最大,属于哪个类别的可能性最小,并分别估计该唐诗属于这两个类别的概率;(2)已知检索关键字的选取规则为:若有超过95%的把握判断“某字”与“某类别”有关系,则“某字”为“某类别”的关键字;若“某字”被选为“某类别”关键字,则由其对应列联表得到的的观测值越大,排名就越靠前;设“山”“帘”“花”和“爱情婚姻”对应的观测值分别为,.已知,请完成下面列联表,并从上述三个字中选出“爱情婚姻”类别的关键字并排名.属于“爱情婚姻”类不属于“爱情婚姻”类总计含“花”字的篇数不含“花”的篇数总计附:,其中.0.050.0250.0103.8415.0246.635参
8、考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率.【详解】解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,则基本事件总数为,则6和28恰好在同一组包含的基本事件个数,6和28不在同一组的概率.故选:C.【点睛】本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.2、D【解析】先化简得再求得解.【详解】所以.故选:D【点睛】本题主要考查复数的运算和
9、模的计算,意在考查学生对这些知识的理解掌握水平.3、C【解析】根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可【详解】解:,则,故选:C【点睛】本题主要考查复数代数形式的运算法则,考查共轭复数的概念,属于基础题4、B【解析】求出导函数,确定函数的单调性,确定函数的最值,根据零点存在定理可确定参数范围【详解】,当时,单调递增,当时,单调递减,在上只有一个极大值也是最大值,显然时,时,因此要使函数有两个零点,则,故选:B【点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围5、C【解析】根据平面向量数量积的坐标运算,化简即可求得的值.【详解】由平面向量数量积
10、的坐标运算,代入化简可得.解得.故选:C.【点睛】本题考查了平面向量数量积的坐标运算,属于基础题.6、B【解析】解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论.【详解】解不等式,解得,则命题为假命题,A选项错误;命题的逆命题是“若,则”,该命题为真命题,B选项正确;命题的否命题是“若,则”,C选项错误;命题的逆否命题是“若,则”,D选项错误故选:B【点睛】本题考查四种命题的关系,考查推理能力,属于基础题.7、B【解析】根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值
11、的求法计算即可.【详解】解:由已知得,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,由于,所以在区间上的最大值为2.故选:B.【点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题8、A【解析】是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得【详解】由题意,函数在轴右边的第一个零点为,在轴左边第一个零点是,的最小值是故选:A.【点睛】本题考查三角函数的周期性,考查函数的对称性函数的零点就是其图象对称中心的横坐标9、D【解析】结合指数函数及对数函数的单调性,可判断出,即可选出答案.【详解】由,即,又,即,即,所以
12、.故选:D.【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.10、C【解析】设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【详解】设的中点为,连接,因此有,而,而平面,因此有平面,所以动点的轨迹平面与正方体的内切球的交线. 正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:因此有,设平面的法向量为,所以有,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨
13、迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.11、B【解析】或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.12、B【解析】设,根据复数的几何意义得到、的关系式,即可得解;【详解】解:设,解得.故选:B【点睛】本题考查复数的几何意义的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、7【解析】画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.【详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线过点时,有
14、最大值,.故答案为:.【点睛】本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.14、【解析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出的值【详解】解:由题意,设(1,0),(0,1),则(,1),(1,);又夹角为60,()()2cos60,即,解得【点睛】本题考查了单位向量和平面向量数量积的运算问题,是中档题15、【解析】由数量积的运算律求得,再由数量积的定义可得结论【详解】由题意,即,故答案为:【点睛】本题考查求向量的夹角,掌握数量积的定义与运算律是解题关键16、【解析】二面角平面角为,点Q到底面的距离为,点Q到定直线得距离为
15、d,则.再由点Q到底面的距离与到点P的距离之比为正常数k,可得,由此可得,则由可求k值.【详解】解:如图,设二面角平面角为,点Q到底面的距离为,点Q到定直线的距离为d,则,即.点Q到底面的距离与到点P的距离之比为正常数k,则,动点Q的轨迹是抛物线,即则.二面角的平面角的余弦值为解得:().故答案为:.【点睛】本题考查了四棱锥的结构特征,由四棱锥的侧面与底面的夹角求参数值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (I) ;(II)证明见解析【解析】(I)直接利用两点间距离公式化简得到答案.(II) 设,联立方程得到,代入化简得到,计算得到证明.【详解】(
16、I) 椭圆,故,.(II)设,则将代入得到:,故,故,得到,故,同理:,由已知得:或,故,即,化简得到.故原点到直线l的距离为为定值.【点睛】本题考查了椭圆内的线段长度,定值问题,意在考查学生的计算能力和综合应用能力.18、(1)证明见解析;(2)存在,【解析】(1)将点代入椭圆方程得到,结合基本不等式,求得取得最小值时,进而证得椭圆的离心率为.(2)当直线的斜率不存在时,根据椭圆的对称性,求得到直线的距离.当直线的斜率存在时,联立直线的方程和椭圆方程,写出韦达定理,利用,则列方程,求得的关系式,进而求得到直线的距离.根据上述分析判断出所求的圆存在,进而求得定圆的方程.【详解】(1)证明:椭圆
17、经过点,当且仅当,即时,等号成立,此时椭圆的离心率.(2)解:椭圆的焦距为2,又,.当直线的斜率不存在时,由对称性,设,.,在椭圆上,到直线的距离.当直线的斜率存在时,设的方程为.由,得,.设,则,.,即,到直线的距离.综上,到直线的距离为定值,且定值为,故存在定圆:,使得圆与直线总相切.【点睛】本小题主要考查点和椭圆的位置关系,考查基本不等式求最值,考查直线和椭圆的位置关系,考查点到直线的距离公式,考查分类讨论的数学思想方法,考查运算求解能力,属于中档题.19、(1)列联表见解析,有把握;(2)分布列见解析,.【解析】(1)根据频率分布直方图补全列联表,求出,从而有的把握认为该校教职工是否为
18、“冰雪迷”与“性别”有关(2)在全校“冰雪迷”中按性别分层抽样抽取6名,则抽中男教工:人,抽中女教工:人,从这6名“冰雪迷”中选取2名作冰雪运动知识讲座记其中女职工的人数为,则的可能取值为0,1,2,分别求出相应的概率,由此能求出的分布列和数学期望【详解】解:(1)由题意得下表:男女合计冰雪迷402060非冰雪迷202040合计6040100的观测值为所以有的把握认为该校教职工是“冰雪迷”与“性别”有关.(2)由题意知抽取的6名“冰雪迷”中有4名男职工,2名女职工,所以的可能取值为0,1,2.且,所以的分布列为012【点睛】本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,
19、考查古典概型、排列组合、频率分布直方图的性质等基础知识,考查运算求解能力,属于中档题20、(1)见解析(2)【解析】(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:, ,底面,平面, ; (2)以为坐标原点建立如图所示的空间直角坐标系, 设平面的法向量为,由可得:,令,则, 设平面的法向量为,由可得:,令,则, 设二面角的平面角为,由图可知为钝角,则, ,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理
20、能力,属于中档题.21、(1)当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2)或.【解析】(1)求出,对分类讨论,先考虑(或)恒成立的范围,并以此作为的分类标准,若不恒成立,求解,即可得出结论;(2)有解,即,令,转化求函数只有一个实数解,根据(1)中的结论,即可求解.【详解】(1),当时,恒成立,当时,综上,当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2),令,原方程只有一个解,只需只有一个解,即求只有一个零点时,的取值范围,由(1)得当时,在单调递增,且,函数只有一个零点,原方程只有一个解,当时,由(1)得在出取得极小值,也是最小值,当时,此时函数只有一
21、个零点,原方程只有一个解,当且递增区间时,递减区间时;,当,有两个零点,即原方程有两个解,不合题意,所以的取值范围是或.【点睛】本题考查导数的综合应用,涉及到单调性、零点、极值最值,考查分类讨论和等价转化思想,属于中档题.22、(1)该唐诗属于“山水田园”类别的可能性最大,属于“其他”类别的可能性最小;属于“山水田园”类别的概率约为;属于“其他”类别的概率约为(2)填表见解析;选择“花”,“帘”作为“爱情婚姻”类别的关键字,且排序为“花”,“帘”【解析】(1)根据统计图表算出频率,比较大小即可判断;(2)根据统计图表完成列联表,算出观测值,查表判断.【详解】(1)由上表可知,该唐诗属于“山水田
22、园”类别的可能性最大,属于“其他”类别的可能性最小属于“山水田园”类别的概率约为;属于“其他”类别的概率约为;(2)列联表如下:属于“爱情婚姻”类不属于“爱情婚姻”类共计含“花”的篇数60100160不含“花”的篇数40300340共计100400500计算得:;因为,所以有超过95%的把握判断“花”字和“帘”字均与“爱情婚姻”有关系,故“花”和“帘”是“爱情婚姻”的关键字,而“山”不是;又因为,故选择“花”,“帘”作为“爱情婚姻”类别的关键字,且排序为“花”,“帘”.【点睛】本题主要考查统计图表、频率与概率的关系、用样本估计总体、独立性检验等知识点.考查了学生对统计图表的识读与计算能力,考查了学生的数据分析、数学运算等核心素养.