《2022-2023学年上海外国语大附属外国语校中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年上海外国语大附属外国语校中考数学全真模拟试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在3,1,0,1四个数中,比2小的数是()A3B1C0D12五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A2、40 B42、38 C40、42 D42、403方程5x2y9与下列方程构成的方程组的解为的是()Ax2y1B3x2y8C5x4
2、y3D3x4y84在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A众数B平均数C中位数D方差5有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是( )ABCD6化简的结果是( )ABCD2(x1)7下列说法中,正确的是( )A两个全等三角形,一定是轴对称的B两个轴对称的三角形,一定是全等的C三角形的一条中线把三角形分成以中线为轴对称的两个图形D三角形的一条高把三角形分成以高线为轴对称的两个图形8一元二次方程4
3、x22x+=0的根的情况是( )A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法判断9下列计算正确的是( )A B C D10如图,已知AC是O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交O于点E,若AOB=3ADB,则()ADE=EBBDE=EBCDE=DODDE=OB二、填空题(共7小题,每小题3分,满分21分)11如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的负半轴上,函数y(x0)的图象经过菱形OABC中心E点,则k的值为_12垫球是排球队常规训练的重要项目之一如图所示的数据是运动员张华十次垫球测试的成绩测试规则为每次
4、连续接球10个,每垫球到位1个记1分则运动员张华测试成绩的众数是_13在平面直角坐标系中,直线l:y=x1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、正方形AnBnCnCn1,使得点A1、A2、A3、在直线l上,点C1、C2、C3、在y轴正半轴上,则点Bn的坐标是_14已知点P是线段AB的黄金分割点,PAPB,AB4 cm,则PA_cm15一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_16如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且ABx轴,则
5、以AB为边的等边三角形ABC的周长为 .17若关于x的方程x2-mx+m=0有两个相等实数根,则代数式2m2-8m+3的值为_三、解答题(共7小题,满分69分)18(10分)如图,一次函数y=x+的图象与反比例函数y=(k0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,AOM面积为1(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标19(5分)如图,在四边形ABCD中,ADBC,BABC,BD平分ABC求证:四边形ABCD是菱形;过点D作DEBD,交BC的延长线于点E,若BC5,BD8,求四边形ABED的周长20(8分)已知关于x的一元二
6、次方程为常数求证:不论m为何值,该方程总有两个不相等的实数根;若该方程一个根为5,求m的值21(10分)佳佳向探究一元三次方程x3+2x2x2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k0)的解,二次函数y=ax2+bx+c(a0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a0)的解,如:二次函数y=x22x3的图象与x轴的交点为(1,0)和(3,0),交点的横坐标1和3即为x22x3=0的解根据以上方程与函数的关系,如果我们直到函数y=x3+2x2x2的图象与x轴交点的横坐标
7、,即可知方程x3+2x2x2=0的解佳佳为了解函数y=x3+2x2x2的图象,通过描点法画出函数的图象x321012y80m2012(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有 个,分别为 ;(3)借助函数的图象,直接写出不等式x3+2x2x+2的解集22(10分)如图,抛物线y=(x1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(1,0)(1)求点B,C的坐标;(2)判断CDB的形状并说明理由;(3)将COB沿x轴向右平移t个单位长度(0t3)得到QPEQPE与CDB重叠部分(如图中阴影部分)面积为S,求S
8、与t的函数关系式,并写出自变量t的取值范围23(12分)如图,已知反比例函数y与一次函数yk2xb的图象交于A(1,8),B(4,m)求k1,k2,b的值;求AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y的图象上的两点,且x1x2,y1y2,指出点M,N各位于哪个象限,并简要说明理由24(14分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图
9、中C对应的中心角度数是 ;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌
10、握比较有理数大小的方法.2、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.3、D【解析】试题分析:将x与y的值代入各项检验即可得到结果解:方程5x+2y=9与下列方程构成的方程组的解为的是3x4y=1故选D点评:此题考查了二元一次方程组的解,方程组的解即为
11、能使方程组中两方程成立的未知数的值4、D【解析】方差是反映一组数据的波动大小的一个量方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。【详解】由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差故选D5、B【解析】解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:共有6种等可能的结果,一次打开锁的有2种情况,一次打开锁的概率为:故选B点睛:本题考查的是用列表法或树状图法求概率注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件
12、;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比6、A【解析】原式利用除法法则变形,约分即可得到结果【详解】原式=(x1)=故选A【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键7、B【解析】根据轴对称图形的概念对各选项分析判断即可得解解:A. 两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B. 两个轴对称的三角形,一定全等,正确;C. 三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;D. 三角形的一条高把三角形分成以高线为轴对称的两个图形,错误.故选B.8、B【解析】试题解析:在方程4x22x+
13、 =0中,=(2)244 =0,一元二次方程4x22x+=0有两个相等的实数根故选B考点:根的判别式9、D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确故选D10、D【解析】解:连接EO.B=OEB,OEB=D+DOE,AOB=3D,B+D=3D,D+DOE+D=3D,DOE=D,ED=EO=OB,故选D.二、填空题(共7小题,每小题3分,满分21分)11、8【解析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC的顶点A
14、的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.12、1【解析】根据众数定义:一组数据中出现次数最多的数据叫做众数可得答案【详解】运动员张华测试成绩的众数是1 故答案为1【点睛】本题主要考查了众数,关键是掌握众数定义13、(2n1,2n1)【解析】解:y=x-1与x轴交于点A1,A1点坐标(1,0),四边形A1B1C1O是正方形,B1坐标(1,1),
15、C1A2x轴,A2坐标(2,1),四边形A2B2C2C1是正方形,B2坐标(2,3),C2A3x轴,A3坐标(4,3),四边形A3B3C3C2是正方形,B3(4,7),B1(20,21-1),B2(21,22-1),B3(22,23-1),Bn坐标(2n-1,2n-1)故答案为(2n-1,2n-1)14、22【解析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4=cm,故答案为:(22)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的,难度一般15、 【解析】用黑球
16、的个数除以总球的个数即可得出黑球的概率【详解】解:袋子中共有5个球,有2个黑球,从袋子中随机摸出一个球,它是黑球的概率为;故答案为【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=16、18。【解析】根据二次函数的性质,抛物线的对称轴为x=3。A是抛物线与y轴的交点,点B是这条抛物线上的另一 点,且ABx轴。A,B关于x=3对称。AB=6。又ABC是等边三角形,以AB为边的等边三角形ABC的周长为63=18。17、1【解析】根据方程的系数结合根的判别式即可得出=m24m=0,将其代入2m28m+1中即可得出结论【详解
17、】关于x的方程x2mx+m=0有两个相等实数根,=(m)24m=m24m=0,2m28m+1=2(m24m)+1=1故答案为1【点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键三、解答题(共7小题,满分69分)18、(1) (2)(0,)【解析】(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;(2)作点A关于y轴的对称点A,连接AB,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值AB的长;利用待定系数法求出直线AB的解析式,得到它与y轴的交点,即点P的坐标【详解】(1)反比例函数 y=
18、=(k0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M, |k|=1,k0,k=2,故反比例函数的解析式为:y=;(2)作点 A 关于 y 轴的对称点 A,连接 AB,交 y 轴于点 P,则 PA+PB 最小由,解得,或,A(1,2),B(4,),A(1,2),最小值 AB= =,设直线 AB 的解析式为 y=mx+n,则 ,解得,直线 AB 的解析式为 y= ,x=0 时,y= ,P 点坐标为(0,)【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键
19、19、(1)详见解析;(2)1.【解析】(1)根据平行线的性质得到ADBCBD,根据角平分线定义得到ABDCBD,等量代换得到ADBABD,根据等腰三角形的判定定理得到ADAB,根据菱形的判定即可得到结论;(2)由垂直的定义得到BDE90,等量代换得到CDEE,根据等腰三角形的判定得到CDCEBC,根据勾股定理得到DE6,于是得到结论【详解】(1)证明:ADBC,ADBCBD,BD平分ABC,ABDCBD,ADBABD,ADAB,BABC,ADBC,四边形ABCD是平行四边形,BABC,四边形ABCD是菱形;(2)解:DEBD,BDE90,DBC+EBDC+CDE90,CBCD,DBCBDC,
20、CDEE,CDCEBC,BE2BC10,BD8,DE6,四边形ABCD是菱形,ADABBC5,四边形ABED的周长AD+AB+BE+DE1【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键20、(1)详见解析;(2)的值为3或1【解析】(1)将原方程整理成一般形式,令即可求解,(2)将x=1代入,求得m的值,再重新解方程即可.【详解】证明:原方程可化为,不论m为何值,该方程总有两个不相等的实数根解:将代入原方程,得:,解得:,的值为3或1【点睛】本题考查了参数对一元二次方程根的影响.中等难度关键是将根据不同情况讨论参数的取值范
21、围.21、(1)2;(2)3,2,或1或1(3)2x1或x1【解析】试题分析:(1)求出x=1时的函数值即可解决问题;利用描点法画出图象即可;(2)利用图象以及表格即可解决问题;(3)不等式x3+2x2x+2的解集,即为函数y=x3+2x2x2的函数值大于2的自变量的取值范围,观察图象即可解决问题.试题解析:(1)由题意m=1+2+12=2函数图象如图所示(2)根据表格和图象可知,方程的解有3个,分别为2,或1或1(3)不等式x3+2x2x+2的解集,即为函数y=x3+2x2x2的函数值大于2的自变量的取值范围观察图象可知,2x1或x122、 ()B(3,0);C(0,3);()为直角三角形;
22、().【解析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标(2)分别求出CDB三边的长度,利用勾股定理的逆定理判定CDB为直角三角形(3)COB沿x轴向右平移过程中,分两个阶段:当0t时,如答图2所示,此时重叠部分为一个四边形;当t3时,如答图3所示,此时重叠部分为一个三角形【详解】解:()点在抛物线上,得抛物线解析式为:,令,得,;令,得或,.()为直角三角形.理由如下:由抛物线解析式,得顶点的坐标为.如答图1所示,过点作轴于点M,则,.过点作于点,则,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.,为直角三角形. ()设直线的解析式为,解得,
23、直线是直线向右平移个单位得到,直线的解析式为:;设直线的解析式为,解得:,.连续并延长,射线交交于,则.在向右平移的过程中:(1)当时,如答图2所示:设与交于点,可得,.设与的交点为,则:.解得,.(2)当时,如答图3所示:设分别与交于点、点.,.直线解析式为,令,得,.综上所述,与的函数关系式为:.23、 (1) k11,b6(1)15(3)点M在第三象限,点N在第一象限【解析】试题分析:(1)把A(1,8)代入求得=8,把B(-4,m)代入求得m=-1,把A(1,8)、B(-4,-1)代入求得、b的值;(1)设直线y=1x+6与x轴的交点为C,可求得OC的长,根据SABC=SAOC+SBO
24、C即可求得AOB的面积;(3)由可知有三种情况,点M、N在第三象限的分支上,点M、N在第一象限的分支上, M在第三象限,点N在第一象限,分类讨论把不合题意的舍去即可试题解析:解:(1)把A(1,8), B(-4,m)分别代入,得=8,m=-1A(1,8)、B(-4,-1)在图象上,解得,(1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,OC=3SABC=SAOC+SBOC=(3)点M在第三象限,点N在第一象限若0,点M、N在第三象限的分支上,则,不合题意;若0,点M、N在第一象限的分支上,则,不合题意;若0,M在第三象限,点N在第一象限,则0,符合题意考点:反比例函数与一次函数的
25、交点坐标;用待定系数法求函数表达式;反比例函数的性质24、(1)150人;(2)补图见解析;(3)144;(4)300盒【解析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有3020%150人;(2)C类别人数为150(30+45+15)60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360144故答案为144(4)600()300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.