《2022-2023学年浙江省嘉兴市上海外国语大秀洲外国语校中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年浙江省嘉兴市上海外国语大秀洲外国语校中考数学最后冲刺模拟试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上若AB=6,AD=9,则五边形ABMND的周长为()A28B26C25D222若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A15cm2B24cm2C39cm2D48cm23估计的值在()A4和5之间B5
2、和6之间C6和7之间D7和8之间4若代数式有意义,则实数x的取值范围是( )Ax0Bx2Cx0Dx25某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是()年龄(岁)1213141516人数12252A2,14岁B2,15岁C19岁,20岁D15岁,15岁6如图,在平面直角坐标系中,OAB的顶点A在x轴正半轴上,OC是OAB的中线,点B、C在反比例函数y=(x0)的图象上,则OAB的面积等于()A2B3C 4D67对于反比例函数,下列说法不正确的是()A点(2,1)在它的图象上B它的图象在第一、三象限C当x0时,y随x的增大而增大D当x0时,y随x的增大而减小8“一般的,如
3、果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根苏科版数学九年级(下册)P21”参考上述教材中的话,判断方程x22x=2实数根的情况是 ( )A有三个实数根B有两个实数根C有一个实数根D无实数根9下列运算正确的是()A5a+2b=5(a+b)Ba+a2=a3C2a33a2=6a5D(a3)2=a510如图,在热气球C处测得地面A、B两点的俯角分别为30、45,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A200米B200米C220米D100米二、填空题(共7小题,每小题3分,满分21分)11在某公
4、益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为_ 人12在ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则ABC的面积为_cm113现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_14已知 x(x+1)x+1,则x_15在RtABC中,C=90,若AB=4,sinA =,则斜边AB边上的高CD的长为_.16如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰
5、角为60,然后在坡顶D测得树顶B的仰角为30,已知DEEA,斜坡CD的长度为30m,DE的长为15m,则树AB的高度是_m17一组数:2,1,3,7,23,满足“从第三个数起,前两个数依次为、,紧随其后的数就是”,例如这组数中的第三个数“3”是由“”得到的,那么这组数中表示的数为_.三、解答题(共7小题,满分69分)18(10分)如图,分别延长ABCD的边到,使,连接EF,分别交于,连结求证:19(5分)如图,二次函数y+mx+4m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C抛物线的对称轴是直线x2,D是抛物线的顶点(1)求二次函数的表达式;(2)当x1时,请求出y的取值范围;
6、(3)连接AD,线段OC上有一点E,点E关于直线x2的对称点E恰好在线段AD上,求点E的坐标20(8分)已知:如图1在RtABC中,C=90,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0t5),解答下列问题:(1)当为t何值时,PQBC;(2)设AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQPC为菱形?若存在,求出此时t的值;若不存在,请说明理
7、由21(10分)请你仅用无刻度的直尺在下面的图中作出ABC 的边 AB 上的高 CD如图,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC、AC 分别交于点 E、F如图,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E22(10分)已知在梯形ABCD中,ADBC,AB=BC,DCBC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q(1)求AB的长;(2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系23(12分)如图,在RtABC与RtABD中,ABC=BAD=90,AD=BC,AC,BD相交于点G,过点
8、A作AEDB交CB的延长线于点E,过点B作BFCA交DA的延长线于点F,AE,BF相交于点H图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG是菱形;若使四边形AHBG是正方形,还需在RtABC的边长之间再添加一个什么条件?请你写出这个条件(不必证明)24(14分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x0)的图象经过线段OC的中点A,交DC于点E,交BC于点F(1)求反比例函数的解析式;(2)求OEF的面积;(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出
9、不等式k2x+b的解集参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】如图,运用矩形的性质首先证明CN=3,C=90;运用翻折变换的性质证明BM=MN(设为),运用勾股定理列出关于的方程,求出,即可解决问题【详解】如图,由题意得:BM=MN(设为),CN=DN=3;四边形ABCD为矩形,BC=AD=9,C=90,MC=9-;由勾股定理得:2=(9-)2+32,解得:=5,五边形ABMND的周长=6+5+5+3+9=28,故选A【点睛】该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股
10、定理等几何知识点来分析、判断、推理或解答2、B【解析】试题分析:底面积是:9cm1,底面周长是6cm,则侧面积是:65=15cm1则这个圆锥的全面积为:9+15=14cm1故选B考点:圆锥的计算3、C【解析】 ,.即的值在6和7之间.故选C.4、D【解析】根据分式的分母不等于0即可解题.【详解】解:代数式有意义,x-20,即x2,故选D.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.5、D【解析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数【详解】解:数据1出现了
11、5次,最多,故为众数为1;按大小排列第6和第7个数均是1,所以中位数是1故选D【点睛】本题主要考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数6、B【解析】作BDx轴于D,CEx轴于E,BDCE,OC是OAB的中线,设CE=x,则BD=2x,C的横坐标为,B的横坐标为,OD=,OE=,DE=OE-OD=,AE=DE=,OA=OE+AE=,SOAB=OABD=1故选B.点睛:本题是反比例函数与几何的综
12、合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.7、C【解析】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x0时,y随x的增大而减小,所以C错误;D中,当x0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化8、C【解析】试题分析:由得,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所
13、以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.9、C【解析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a33a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误故选C【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键10、D【解析】在热气球C处测得地面B点的俯角分别为45,BD=CD=100米,再在RtACD中求出AD的长,据此即
14、可求出AB的长【详解】在热气球C处测得地面B点的俯角分别为45,BDCD100米,在热气球C处测得地面A点的俯角分别为30,AC2100200米,AD100米,ABAD+BD100+100100(1+)米,故选D【点睛】本题考查了解直角三角形的应用-仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形二、填空题(共7小题,每小题3分,满分21分)11、35【解析】分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案详解:根据题意可知,本年级捐款捐款的同学一共有2025%=80(人),则本次捐款20元的有:80(20+10+15)=35(人),故答案
15、为:35.点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.12、2或2【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2故答案为2或2考点:勾股定理13、【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】67000000000的小数点向左移动10位得到6.7,所以67000000000用科学记数法表示为,故答案为:【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式
16、,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值14、1或-1【解析】方程可化为:,或,或.故答案为1或-1.15、【解析】如图,在RtABC中,C=90,AB=4,sinA=,BC=,AC=,CD是AB边上的高,CD=ACsinA=.故答案为:.16、1【解析】先根据CD=20米,DE=10m得出DCE=30,故可得出DCB=90,再由BDF=30可知DBE=60,由DFAE可得出BGF=BCA=60,故GBF=30,所以DBC=30,再由锐角三角函数的定义即可得出结论【详解】解:作DFAB于F,交BC于G则四边形DEAF是矩形,DE=AF=15m,DFAE, BGF=BC
17、A=60,BGF=GDB+GBD=60,GDB=30,GDB=GBD=30,GD=GB,在RtDCE中,CD=2DE,DCE=30,DCB=90,DGC=BGF,DCG=BFG=90DGCBGF,BF=DC=30m,AB=30+15=1(m),故答案为1【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键17、9.【解析】根据题中给出的运算法则按照顺序求解即可.【详解】解:根据题意,得:,.故答案为:9.【点睛】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.三、解答题(共7小题,满分69分)18、证明见解析【解析】分析:根据平
18、行四边形的性质以及已知的条件得出EGD和FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案详解:证明:在ABCD中,又,又,四边形AGCH为平行四边形, 点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形19、(1)y=x11x+6;(1)y;(3)(0,4)【解析】(1)利用对称轴公式求出m的值,即可确定出解析式;(1)根据x的范围,利用二次函数的增减性确定出y的范围即可;(3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确
19、定出E坐标即可【详解】(1)抛物线对称轴为直线x=1,=1,即m=1,则二次函数解析式为y=x11x+6;(1)当x=时,y=;当x=1时,y=x1位于对称轴右侧,y随x的增大而减小,y;(3)当x=1时,y=8,顶点D的坐标是(1,8),令y=0,得到:x11x+6=0,解得:x=6或x=1点A在点B的左侧,点A坐标为(6,0)设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11设E(0,n),则有E(4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4)【点睛】本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键20
20、、(1)当t=时,PQBC;(2)(t)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQPC为菱形【解析】(1)只要证明APQABC,可得=,构建方程即可解决问题;(2)过点P作PDAC于D,则有APDABC,理由相似三角形的性质构建二次函数即可解决问题;(3)存在由APOABC,可得=,即=,推出OA=(5t),根据OC=CQ,构建方程即可解决问题;【详解】(1)在RtABC中,AB=10,BP=2t,AQ=t,则AP=102t,PQBC,APQABC,=,即=,解得t=,当t=时,PQBC(2)过点P作PDAC于D,则有APDABC,=,即=,PD=6t,y=t(6t)=(t
21、)2+,当t=时,y有最大值为(3)存在理由:连接PP,交AC于点O四边形PQPC为菱形,OC=CQ,APOABC,=,即=,OA=(5t),8(5t)=(8t),解得t=,当t=时,四边形PQPC为菱形【点睛】本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题21、(1)详见解析;(2)详见解析.【解析】(1)连接AE、BF,找到ABC的高线的交点,据此可得CD;(2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG于点D,据此可得【详解】(1)如
22、图所示,CD 即为所求;(2)如图,CD 即为所求【点睛】本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质22、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.【解析】(1)过A作AEBC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;(2)过P作PFBQ于F,根据相似三角形的性质得到PB=,得到PA=AB-PB=,过P作PGCD于G交AE于M,根据相似三角形的性质得到PM=,根据切线的判定定理即可得到结论【详解】(1)过A作AEBC于E,则四边形AECD是矩形,CE=AD=1,AE=CD=3,AB=BC,BE
23、=AB-1,在RtABE中,AB2=AE2+BE2,AB2=32+(AB-1)2,解得:AB=5;(2)过P作PFBQ于F,BF=BQ=,PBFABE,PB=,PA=AB-PB=,过P作PGCD于G交AE于M,GM=AD=1,DCBCPGBCAPMABE,PM=,PG=PM+MG=PB,圆P与直线DC相切【点睛】本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键23、 (1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC【解析】试题分析:(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如ABCBAD,利用SAS可证明(2)
24、由已知可得四边形AHBG是平行四边形,由(1)可知ABD=BAC,得到GAB为等腰三角形,AHBG的两邻边相等,从而得到平行四边形AHBG是菱形试题解析:(1)解:ABCBAD证明:AD=BC,ABC=BAD=90,AB=BA,ABCBAD(SAS)(2)证明:AHGB,BHGA,四边形AHBG是平行四边形ABCBAD,ABD=BACGA=GB平行四边形AHBG是菱形(3)需要添加的条件是AB=BC点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一24、(1)y=;(2);(3)x1【解析】(1)先利用矩形的性质确定C点坐标(1,4),再确定A
25、点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据OEF的面积=S矩形BCDOSODESOBFSCEF进行计算;(3)观察函数图象得到当x1时,一次函数图象都在反比例函数图象上方,即k2x+b【详解】(1)四边形DOBC是矩形,且点C的坐标为(1,4),OB=1,OD=4,点A为线段OC的中点,A点坐标为(3,2),k1=32=1,反比例函数解析式为y=;(2)把x=1代入y=得y=1,则F点的坐标为(1,1);把y=4代入y=得x=,则E点坐标为(,4),OEF的面积=S矩形BCDOSODESOBFSCEF=41411(1)(41)=;(3)由图象得:不等式不等式k2x+b的解集为x1【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可