《2022-2023学年浙江省嘉兴市上海外国语大秀洲外国语校中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年浙江省嘉兴市上海外国语大秀洲外国语校中考数学四模试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A2人B16人C20人D40人
2、2如图所示的几何体的俯视图是()ABCD3世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司将0.056用科学记数法表示为( )A5.6101B5.6102C5.6103D0.561014如图,已知ABC,按以下步骤作图:分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;作直线 MN 交 AB 于点 D,连接 CD若 CD=AC,A=50,则ACB 的度数为( )A90B95C105D1105在O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A3B4C5D66为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民20
3、15年4月份用电量的调查结果:居民(户)1234月用电量(度/户)30425051那么关于这10户居民月用电量(单位:度),下列说法错误的是()A中位数是50B众数是51C方差是42D极差是217下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )ABCD8如图1,将三角板的直角顶点放在直角尺的一边上,1=30,2=50,则3的度数为A80B50C30D209如图,将周长为8的ABC沿BC方向平移1个单位长度得到,则四边形的周长为( )A8B10C12D1610下列四个图形中,是中心对称图形的是( )ABCD11我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民
4、用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8910户数262则关于这10户家庭的月用水量,下列说法错误的是()A方差是4B极差是2C平均数是9D众数是912如图,M是ABC的边BC的中点,AN平分BAC,BNAN于点N,且AB=10,BC=15,MN=3,则AC的长是()A12B14 C16D18二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,平行线AB、CD被直线EF所截,若2=130,则1=_14不等式5x33x+5的非负整数解是_15如图,O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为_16安全问题大于天,为加大宣传力度,提
5、高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:互相关心;互相提醒;不要相互嬉水;相互比潜水深度;选择水流湍急的水域;选择有人看护的游泳池小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_17比较大小:_3(填“”或“”或“”)18如图,等腰ABC中,AB=AC,DBC=15,AB的垂直平分线MN交AC于点D,则A的度数是 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,四边形ABCD中,AC平分DAB,AC2ABAD,ADC90,E为AB的中点(1)求证:ADCA
6、CB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD4,AB6,求的值20(6分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图所示,乙绘制的如图所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学
7、作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?21(6分)当x取哪些整数值时,不等式与47x3都成立?22(8分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3)(1)求该二次函数的表达式;(2)过点A的直线ADBC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D
8、向点B运动,问:在运动过程中,当运动时间t为何值时,DMN的面积最大,并求出这个最大值23(8分)4月23日是世界读书日,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气。”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:收集数据 从学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min): 30 60 81 50 40 110 130 146 90 100 60 81 120 140 70 81 10 20 100 81整理数据 按如下分段整理样本数据并补全表
9、格:课外阅读时间(min)等级DCBA人数38分析数据 补全下列表格中的统计量:平均数中位数众数80得出结论 (1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为 ; (2)如果该校现有学生400人,估计等级为“”的学生有多少名? (3)假设平均阅读一本课外书的时间为160分钟,请你选择一种统计量估计该校学生每人一年 (按52周计算)平均阅读多少本课外书?24(10分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图请根据有关信息解答: (1)接受测评的学生共有_人,扇形统计图中“优”部分所对应扇
10、形的圆心角为_,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率25(10分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的面积为多少?26(12分)
11、解不等式组,并将它的解集在数轴上表示出来27(12分)如图,在边长为1的小正方形组成的方格纸上,将ABC绕着点A顺时针旋转90画出旋转之后的ABC;求线段AC旋转过程中扫过的扇形的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值【详解】400人.故选C【点睛】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值2、D【解析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中【详解】从上往下看,该几何体的俯视图与选项D所示视图
12、一致故选D【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图3、B【解析】0.056用科学记数法表示为:0.056=,故选B.4、C【解析】根据等腰三角形的性质得到CDA=A=50,根据三角形内角和定理可得DCA=80,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到B=BCD,根据三角形外角性质可知B+BCD=CDA,进而求得BCD=25,根据图形可知ACB=ACD+BCD,即可解决问题.【详解】CD=AC,A=50CDA=A=50CDA+A+DCA=180DCA=80根据作图步骤可知,MN垂直平分线段BCBD=C
13、DB=BCDB+BCD=CDA2BCD=50BCD=25ACB=ACD+BCD=80+25=105故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.5、A【解析】解:作OCAB于C,连结OA,如图OCAB,AC=BC=AB=8=1在RtAOC中,OA=5,OC=,即圆心O到AB的距离为2故选A6、C【解析】试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,
14、极差为51-30=21,方差为(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2=42.1故选C考点:1.方差;2.中位数;3.众数;4.极差7、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.8、D【解析】试题分析:根据平行线的性质,得4=2=50,再根据三角形的外角的性质3=4-1=50-30=20故答案选D考点:平行线的性质;三角形的外角的性质9、B【解析】根据平移的基本性质,得出四边形ABFD的周长
15、=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案根据题意,将周长为8个单位的ABC沿边BC向右平移1个单位得到DEF,AD=1,BF=BC+CF=BC+1,DF=AC;又AB+BC+AC=8,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1故选C“点睛”本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等得到CF=AD,DF=AC是解题的关键10、D【解析】试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项
16、错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D考点:中心对称图形11、A【解析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2= (x1-)2+(x2-)2+(xn-)2,分别进行计算可得答案详解:极差:10-8=2,平均数:(82+96+102)10=9,众数为9,方差:S2= (8-9)22+(9-9)26+(10-9)22=0.4,故选A点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法12、C【解析】延长线段BN交AC于E.AN平分BAC
17、,BAN=EAN.在ABN与AEN中,BAN=EAN,AN=AN,ANB=ANE=90,ABNAEN(ASA),AE=AB=10,BN=NE.又M是ABC的边BC的中点,CE=2MN=23=6,AC=AE+CE=10+6=16.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分)13、50【解析】利用平行线的性质推出EFC=2=130,再根据邻补角的性质即可解决问题.【详解】ABCD,EFC=2=130,1=180-EFC=50,故答案为50【点睛】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题14、0,1,2,1【解析】5x11x+5
18、,移项得,5x1x5+1,合并同类项得,2x8,系数化为1得,x4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键 15、【解析】由于六边形ABCDEF是正六边形,所以AOB=60,故OAB是等边三角形,OA=OB=AB=2,设点G为AB与O的切点,连接OG,则OGAB,OG=OAsin60,再根据S阴影=SOAB-S扇形OMN,进而可得出结论【详解】六边形ABCDEF是正六边形,AOB=60,OAB是等边三角形,OA=OB=AB=2,设点G为AB与O的切点,连接OG,则OGAB, S阴影=SOAB-S扇形OMN=
19、故答案为【点睛】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.16、【解析】根据事件的描述可得到描述正确的有,即可得到答案.【详解】共有6张纸条,其中正确的有互相关心;互相提醒;不要相互嬉水;选择有人看护的游泳池,共4张,抽到内容描述正确的纸条的概率是, 故答案为:【点睛】此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.17、.【解析】先利用估值的方法先得到3.4,再进行比较即可.【详解】解:3.4,3.43.3.故答案为:.【点睛】本题考查了实数的比较大小,对进行合理估值是解题的关键.18、50【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD
20、,根据等边对等角可得A=ABD,然后表示出ABC,再根据等腰三角形两底角相等可得C=ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】MN是AB的垂直平分线,AD=BD. A=ABD.DBC=15,ABC=A+15.AB=AC,C=ABC=A+15.A+A+15+A+15=180,解得A=50故答案为50三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)CEAD,理由见解析;(3)【解析】(1)根据角平分线的定义得到DAC=CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到ACB=ADC=90,根据直角三角
21、形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;(3)根据相似三角形的性质列出比例式,计算即可【详解】解:(1)AC平分DAB,DAC=CAB,又AC2=ABAD,AD:AC=AC:AB,ADCACB;(2)CEAD,理由:ADCACB,ACB=ADC=90,又E为AB的中点,EAC=ECA,DAC=CAE,DAC=ECA,CEAD;(3)AD=4,AB=6,CE=AB=AE=3,CEAD,FCE=DAC,CEF=ADF,CEFADF,=,=20、 (1) 乙在整理数据时漏了一个数据,它在169.5174.5内;(答案不唯一);(2)120;(3)160或1;(4).【解析
22、】(1)对比图与图,找出图中与图不相同的地方;(2)则159.5164.5这一部分的人数占全班人数的比乘以360;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为2060360=120,故答案为120;(3)根据中位数的求法,将甲的数据从小到大依次
23、排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1故答案为160或1;(4)列树状图得:P(一男一女)=21、2,1【解析】根据题意得出不等式组,解不等式组求得其解集即可【详解】根据题意得,解不等式,得:x1,解不等式,得:x1,则不等式组的解集为1x1,x可取的整数值是2,1【点睛】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键22、(1)y=x2+2x+3;(2)y=x1;(3)P()或P(4.5,0);当t=时,SMDN的最大值为【解析】(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到结果;(2)在y=
24、-x2+2x+3中,令y=0,则-x2+2x+3=0,得到B(3,0),由已知条件得直线BC的解析式为y=-x+3,由于ADBC,设直线AD的解析式为y=-x+b,即可得到结论;(3)由BCAD,得到DAB=CBA,全等只要当或时,PBCABD,解方程组得D(4,5),求得设P的坐标为(x,0),代入比例式解得或x=4.5,即可得到或P(4.5,0);过点B作BFAD于F,过点N作NEAD于E,在RtAFB中,BAF=45,于是得到sinBAF 求得求得 由于于是得到即可得到结果【详解】(1)由题意知: 解得 二次函数的表达式为 (2)在 中,令y=0,则 解得: B(3,0),由已知条件得直
25、线BC的解析式为y=x+3,ADBC,设直线AD的解析式为y=x+b,0=1+b,b=1,直线AD的解析式为y=x1;(3)BCAD,DAB=CBA,只要当:或时,PBCABD,解得D(4,5), 设P的坐标为(x,0),即或 解得或x=4.5,或P(4.5,0),过点B作BFAD于F,过点N作NEAD于E,在RtAFB中, sinBAF 又 当时,的最大值为【点睛】属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.23、(1)填表见解析;(2)160名;(3)平均数;26本.【解析】【分析】先确定统计表中的
26、C、A等级的人数,再根据中位数和众数的定义得到样本数据的中位数和众数;(1)根据统计量,结合统计表进行估计即可;(2)用“B”等级人数所占的比例乘以全校的学生数即可得;(3)选择平均数,计算出全年阅读时间,然后再除以阅读一本课外书的时间即可得.【详解】整理数据 按如下分段整理样本数据并补全表格:课外阅读时间(min)等级DCBA人数3584分析数据 补全下列表格中的统计量:平均数中位数众数808181得出结论(1)观察统计量表格可以估计该校学生每周用于课外阅读时间的情况等级B ,故答案为:B;(2) 820400=160 该校等级为“”的学生有160名; (3) 选统计量:平均数8052160
27、=26 ,该校学生每人一年平均阅读26本课外书.【点睛】本题考查了中位数、众数、平均数、统计表、用样本估计总体等知识,熟练掌握各统计量的求解方法是关键.24、 (1)80,135,条形统计图见解析;(2)825人;(3)图表见解析,(抽到1男1女) 【解析】试题分析:(1)、根据“中”的人数和百分比得出总人数,然后求出优所占的百分比,得出圆心角的度数;(2)、根据题意得出“良”和“优”两种所占的百分比,从而得出全校的总数;(3)、根据题意利用列表法或者树状图法画出所有可能出现的情况,然后根据概率的计算法则求出概率.试题解析:(1)80,135; 条形统计图如图所示(2)该校对安全知识达到“良”
28、程度的人数:(人)(3)解法一:列表如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以(抽到1男1女) 女1女2女3男1男2女1-女2女1女3女1男1女1男2女1女2女1女2-女3女2男1女2男2女2女3女1女3女2女3-男1女3男2女3男1女1男1女2男1女3男1-男2男1男2女1男2女2男2女3男2男1男2-解法二:画树状图如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以(抽到1男1女) 25、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横
29、坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.试题解析:(1)A(0,2),BCx轴,B(1,2),C(3,2),AB=1,CA=3,线段AB与线段CA的长度之比为;(2)B是函数y=(x0)的一点,C是函数y=(x0)的一点,B(,a),C(,a),AB=,CA=,线段A
30、B与线段CA的长度之比为;(3)=,=,又OA=a,CDy轴,CD=4a,四边形AODC的面积为=(a+4a)=1 26、x1,解集表示在数轴上见解析【解析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集【详解】去分母,得:3x2(x1)3,去括号,得:3x2x+23,移项,得:3x2x32,合并同类项,得:x1,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集27、.(1)见解析(2)【解析】(1)根据网格结构找出点B、C旋转后的对应点B、C的位置,然后顺次连接即可.(2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.【详解】解:(1)ABC如图所示:(2)由图可知,AC=2,线段AC旋转过程中扫过的扇形的面积.