2022-2023学年六盘水市重点中学高考仿真卷数学试卷含解析.doc

上传人:茅**** 文档编号:87794849 上传时间:2023-04-17 格式:DOC 页数:18 大小:1.83MB
返回 下载 相关 举报
2022-2023学年六盘水市重点中学高考仿真卷数学试卷含解析.doc_第1页
第1页 / 共18页
2022-2023学年六盘水市重点中学高考仿真卷数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022-2023学年六盘水市重点中学高考仿真卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年六盘水市重点中学高考仿真卷数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,复数,且为实数,则( )ABC3D-32某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积

2、为( )ABCD3党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )ABCD4已知 ,且是的充分不必要条件,则的取值范围是( )ABCD5设命题p:1,n22n,则p为( )ABCD6设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则( )ABCD7如图,在底面边长为1,高为2的正四棱柱中,点是平

3、面内一点,则三棱锥的正视图与侧视图的面积之和为( )A2B3C4D58要得到函数的图像,只需把函数的图像( )A向左平移个单位B向左平移个单位C向右平移个单位D向右平移个单位9已知平面向量满足,且,则所夹的锐角为( )ABCD010如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )ABCD811若P是的充分不必要条件,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件12已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,内角所对的边分别

4、是.若,则_,面积的最大值为_.14已知数列递增的等比数列,若,则_.15若函数为偶函数,则 16已知(且)有最小值,且最小值不小于1,则的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)求二面角的余弦值.18(12分)已知数列是各项均为正数的等比数列,且,成等差数列()求数列的通项公式;()设,为数列的前项和,记,证明:19(12分)已知椭圆的离心率为,且过点()求椭圆的方程;()设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值20(12分)如图,在

5、矩形中,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.21(12分)试求曲线ysinx在矩阵MN变换下的函数解析式,其中M,N22(10分)已知抛物线的顶点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线,其中为切点.(1)求抛物线的方程;(2)求证:直线恒过定点,并求面积的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值【详解】因为为实数,所以,解得.【点

6、睛】本题考查复数的概念,考查运算求解能力.2、C【解析】作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外接圆直径,利用公式可计算出外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【详解】三棱锥的实物图如下图所示:将其补成直四棱锥,底面,可知四边形为矩形,且,.矩形的外接圆直径,且.所以,三棱锥外接球的直径为,因此,该三棱锥的外接球的表面积为.故选:C.【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等

7、题.3、D【解析】 根据四个列联表中的等高条形图可知, 图中D中共享与不共享的企业经济活跃度的差异最大, 它最能体现共享经济对该部门的发展有显著效果,故选D4、D【解析】“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【详解】由题意知:可化简为,所以中变量取值的集合是中变量取值集合的真子集,所以.【点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.5、C【解析】根据命题的否定,可以写出:,所以选C.6、D【解析】根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.

8、【详解】函数(,)是上的奇函数,则,所以.又的图象关于直线对称可得,即,由函数的单调区间知,即,综上,则,.故选:D【点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.7、A【解析】根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.8、A【解析】运用辅助角公式将两个函数公式进行变形

9、得以及,按四个选项分别对变形,整理后与对比,从而可选出正确答案.【详解】解:.对于A:可得.故选:A.【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.9、B【解析】根据题意可得,利用向量的数量积即可求解夹角.【详解】因为即而所以夹角为故选:B【点睛】本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题.10、A【解析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,故选:A【点睛

10、】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键11、B【解析】试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B考点:逻辑命题12、A【解析】根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.【详解】 为定义在上的偶函数,图象关于轴对称又在上是增函数 在上是减函数 ,即对于恒成立 在上恒成立,即的取值范围为:本题正确选项:【点睛】本题考查利用函数的奇偶性和

11、单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.二、填空题:本题共4小题,每小题5分,共20分。13、1 【解析】由正弦定理,结合,可求出;由三角形面积公式以及角A的范围,即可求出面积的最大值.【详解】因为,所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1). 1 (2). 【点睛】本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,属于基础题型.14、【解析】,建立方程组,且,求出,进而求出的公比,即可求出结论.【详解】数列递增的等比数列,解得,

12、所以的公比为,.故答案为:.【点睛】本题考查等比数列的性质、通项公式,属于基础题.15、1【解析】试题分析:由函数为偶函数函数为奇函数,考点:函数的奇偶性【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型首先利用转化思想,将函数为偶函数转化为 函数为奇函数,然后再利用特殊与一般思想,取16、【解析】真数有最小值,根据已知可得的范围,求出函数的最小值,建立关于的不等量关系,求解即可.【详解】,且(且)有最小值,的取值范围为.故答案为:.【点睛】本题考查对数型复合函数的性质,熟练掌握基本初等

13、函数的性质是解题关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)证明见解析 (2) 【解析】(1)连接交于点,由三角形中位线定理得,由此能证明平面(2)以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立空间直角坐标系分别求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值【详解】证明:证明:连接交于点,则为的中点又是的中点,连接,则因为平面,平面,所以平面(2)由,可得:,即所以又因为直棱柱,所以以点为坐标原点,分别以直线为轴、轴、轴,建立空间直角坐标系, 则,设平面的法向量为,则且,可解得,令,得平面的一个法向量为

14、, 同理可得平面的一个法向量为, 则 所以二面角的余弦值为.【点睛】本题主要考查直线与平面平行、二面角的概念、求法等知识,考查空间想象能力和逻辑推理能力,属于中档题18、(),;()见解析【解析】()由,且成等差数列,可求得q,从而可得本题答案;()化简求得,然后求得,再用裂项相消法求,即可得到本题答案.【详解】()因为数列是各项均为正数的等比数列,可设公比为q,又成等差数列,所以,即,解得或(舍去),则,;()证明:,则,因为,所以即.【点睛】本题主要考查等差等比数列的综合应用,以及用裂项相消法求和并证明不等式,考查学生的运算求解能力和推理证明能力.19、()()1【解析】()由题,得,解方

15、程组,即可得到本题答案;()设直线,则直线,联立,得,联立,得,由此即可得到本题答案.【详解】()由题可得,即,将点代入方程得,即,解得,所以椭圆的方程为:;()由()知, 设直线,则直线,联立,整理得,所以,联立,整理得,设,则,所以,所以【点睛】本题主要考查椭圆标准方程的求法以及直线与椭圆的综合问题,考查学生的运算求解能力.20、(1)见解析;(2)【解析】(1)取的中点,连接,由,进而,由,得. 进而平面,进而结论可得证(2)(方法一)过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中点,

16、上的点,使,连接,得,得二面角的平面角为,再求解即可【详解】(1)证明:取的中点,连接,由已知得,所以,又点是的中点,所以.因为,点是线段的中点,所以.又因为,所以,从而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,则点,所以,.设平面的法向量为,由,得,令,得.同理,设平面的法向量为,由,得,令,得.所以二面角的余弦值为.(方法二)取的中点,上的点,使,连接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角为.又计算得,所以.【点睛】本题考查线面垂直的判定,考查空间

17、向量求二面角,考查空间想象及计算能力,是中档题21、y2sin2x【解析】计算MN,计算得到函数表达式.【详解】M,N,MN, 在矩阵MN变换下, 曲线ysinx在矩阵MN变换下的函数解析式为y2sin2x【点睛】本题考查了矩阵变换,意在考查学生的计算能力.22、(1)(2)见解析,最小值为4【解析】(1)根据焦点到直线的距离列方程,求得的值,由此求得抛物线的方程.(2)设出的坐标,利用导数求得切线的方程,由此判断出直线恒过抛物线焦点.求得三角形面积的表达式,进而求得面积的最小值.【详解】(1)依题意,解得 (负根舍去)抛物线的方程为(2)设点,由,即,得抛物线在点处的切线的方程为,即,点在切线上,同理,综合、得,点的坐标都满足方程.即直线恒过抛物线焦点当时,此时,可知:当,此时直线直线的斜率为,得于是,而把直线代入中消去得,即:当时,最小,且最小值为4【点睛】本小题主要考查点到直线的距离公式,考查抛物线方程的求法,考查抛物线的切线方程的求法,考查直线过定点问题,考查抛物线中三角形面积的最值的求法,考查运算求解能力,属于难题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁