《六盘水市重点中学2022-2023学年中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《六盘水市重点中学2022-2023学年中考数学考前最后一卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1关于x的一元二次方程x22x+k+20有实数根,则k的
2、取值范围在数轴上表示正确的是( )ABCD2已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )ABCD3如图图形中,可以看作中心对称图形的是()ABCD4四个有理数1,2,0,3,其中最小的是( )A1 B2 C0 D35等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x212x+k=0的两个根,则k的值是()A27B36C27或36D186如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A三亚永兴岛B永兴岛黄岩岛C黄岩
3、岛弹丸礁D渚碧礁曾母暗山7义安区某中学九年级人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为甲=89分,乙=89分,S甲2=195,S乙2=1那么成绩较为整齐的是()A甲班B乙班C两班一样D无法确定8关于x的一元一次不等式2的解集为x4,则m的值为( )A14B7C2D29如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示sin的值,错误的是()ABCD10若不等式组的整数解共有三个,则a的取值范围是()A5a6B5a6C5a6D5a6二、填空题(本大题共6个小题,每小题3分,共18分)11据报道,截止2018年2月,我国在澳大利亚的留学生已经达到1
4、7.3万人,将17.3万用科学记数法表示为_12点A到O的最小距离为1,最大距离为3,则O的半径长为_13一组数据10,10,9,8,x的平均数是9,则这列数据的极差是_14一个几何体的三视图如左图所示,则这个几何体是( )ABCD15若一元二次方程有两个不相等的实数根,则k的取值范围是 16如图,在平面直角坐标系xOy中,DEF可以看作是ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由ABC得到DEF的过程:_三、解答题(共8题,共72分)17(8分)小明遇到这样一个问题:已知:. 求证:.经过思考,小明的证明过程如下:,.接下来,小明想:若把带入一元二次方程(a0),恰好
5、得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.18(8分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE(1)求证:DEAG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0360)得到正方形OEFG,如图1在旋转过程中,当OAG是直角时,求的度数;若正方形ABCD的边长为1,在旋转过程中,求AF长
6、的最大值和此时的度数,直接写出结果不必说明理由19(8分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的点和东人工岛上的点间的距离约为5.6千米,点是与西人工岛相连的大桥上的一点,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得,与观光船航向的夹角,求此时观光船到大桥段的距离的长(参考数据:,).20(8分)(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为 ;(拓展探究)(2)如图(
7、2)在RtABC中,点F为斜边BC的中点,分别以AB,AC为底边,在RtABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60,得到正方形ABCD,请直接写出BD平方的值21(8分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PDPG,DFPG于点H,交AB于点F,将线段PG绕点P逆时针旋转90得到线段PE,连接EF(1)求证:DFPG;(2)若PC1,求四边形PEFD的面积22(10分)计算
8、:(1)20182+|1|+3tan3023(12分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a0),市政府如何确定方
9、案才能使费用最少?24如图,港口B位于港口A的南偏东37方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45方向上,这时,E处距离港口A有多远?(参考数据:sin 370.60,cos 370.80,tan 370.75)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】由一元二次方程有实数根可知0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围【详解】关于x的一元二次方程x22x+k+2=0有实数根,=(2)24(k+2)0,解得:k1,在数轴上表示为:故选C.【点睛】本题考
10、查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.2、A【解析】此题考查了概率公式的应用注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.3、D【解析】根据 把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D【点睛】此题主要考
11、查了中心对称图形,关键掌握中心对称图形定义4、D【解析】解:1102,最小的是1故选D5、B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由=0可求出k的值,再求出方程的两个根进行判断即可试题解析:分两种情况:(3)当其他两条边中有一个为3时,将x=3代入原方程,得:33-333+k=0解得:k=37将k=37代入原方程,得:x3-33x+37=0解得
12、x=3或93,3,9不能组成三角形,不符合题意舍去;(3)当3为底时,则其他两边相等,即=0,此时:344-4k=0解得:k=3将k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能够组成三角形,符合题意故k的值为3故选B考点:3等腰三角形的性质;3一元二次方程的解6、A【解析】根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.【详解】由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.【点睛】本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.7、B【解析】根据方差的意义,方差反映了一组数据的波动大小,故可由两人的方差得到结论【详解
13、】S甲2S乙2,成绩较为稳定的是乙班。故选:B.【点睛】本题考查了方差,解题的关键是掌握方差的概念进行解答.8、D【解析】解不等式得到xm+3,再列出关于m的不等式求解.【详解】1,m1x6,1xm6,xm+3,关于x的一元一次不等式1的解集为x4,m+3=4,解得m=1故选D考点:不等式的解集9、D【解析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案【详解】BDC=90,B+BCD=90,ACB=90,即BCD+ACD=90,ACD=B=,A、在RtBCD中,sin=,故A正确,不符合题意;B、在RtABC中,sin=,故B正确,不符合题意;C、在RtACD中,sin=,故C
14、正确,不符合题意;D、在RtACD中,cos=,故D错误,符合题意,故选D【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边10、C【解析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围【详解】解不等式组得:2xa,不等式组的整数解共有3个,这3个是3,4,5,因而5a1故选C【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中
15、间找,大大小小解不了二、填空题(本大题共6个小题,每小题3分,共18分)11、1.731【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将17.3万用科学记数法表示为1.731故答案为1.731【点睛】本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.12、1或2【解析】分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得答案【详解】点在圆内,圆的直径为1+3
16、=4,圆的半径为2;点在圆外,圆的直径为31=2,圆的半径为1,故答案为1或2.【点睛】本题考查点与圆的位置关系,关键是分类讨论:点在圆内,点在圆外.13、1【解析】先根据平均数求出x,再根据极差定义可得答案【详解】由题意知=9,解得:x=8,这列数据的极差是10-8=1,故答案为1【点睛】本题主要考查平均数和极差,熟练掌握平均数的计算得出x的值是解题的关键14、A【解析】根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.【详解】根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.主视图中间的线是实线.故选A.【点睛】考查简单几何体的三视图,掌
17、握常见几何体的三视图是解题的关键.15、:k1【解析】一元二次方程有两个不相等的实数根,=44k0,解得:k1,则k的取值范围是:k1故答案为k116、平移,轴对称【解析】分析:根据平移的性质和轴对称的性质即可得到由OCD得到AOB的过程详解:ABC向上平移5个单位,再沿y轴对折,得到DEF,故答案为:平移,轴对称点睛:考查了坐标与图形变化-旋转,平移,轴对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小三、解答题(共8题,共72分)17、证明见解析【解析】解:,.是一元二次方程的根. ,.18、(1)见解析;(1)3
18、0或150,的长最大值为,此时【解析】(1)延长ED交AG于点H,易证AOGDOE,得到AGO=DEO,然后运用等量代换证明AHE=90即可;(1)在旋转过程中,OAG成为直角有两种情况:由0增大到90过程中,当OAG=90时,=30,由90增大到180过程中,当OAG=90时,=150;当旋转到A、O、F在一条直线上时,AF的长最大,AF=AO+OF=+1,此时=315【详解】(1)如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,OA=OD,OAOD,OG=OE,在AOG和DOE中,AOGDOE,AGO=DEO,AGO+GAO=90,GAO+DEO=90,AHE=90,即D
19、EAG;(1)在旋转过程中,OAG成为直角有两种情况:()由0增大到90过程中,当OAG=90时,OA=OD=OG=OG,在RtOAG中,sinAGO=,AGO=30,OAOD,OAAG,ODAG,DOG=AGO=30,即=30;()由90增大到180过程中,当OAG=90时,同理可求BOG=30,=18030=150.综上所述,当OAG=90时,=30或150.如图3,当旋转到A.O、F在一条直线上时,AF的长最大,正方形ABCD的边长为1,OA=OD=OC=OB=,OG=1OD,OG=OG=,OF=1,AF=AO+OF=+1,COE=45,此时=315.【点睛】本题考查的是正方形的性质、旋
20、转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用19、5.6千米【解析】设PD的长为x千米,DA的长为y千米,在RtPAD中利用正切的定义得到tan18=,即y=0.33x,同样在RtPDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可【详解】设PD的长为x千米,DA的长为y千米,在RtPAD中,tanDPA=,即tan18=,y=0.33x,在RtPDB中,tanDPB=,即tan53=,y+5.6=1.33x,0.33x+5.6=1.33x,解得x=5.6,答:此时观光船
21、到大桥AC段的距离PD的长为5.6千米【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案20、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或168【解析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;(2)根据RtABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出AMF=MAN=ANF=90,即可判定四边形AMFN是矩形;(3)分两
22、种情况:以点A为旋转中心将正方形ABCD逆时针旋转60,以点A为旋转中心将正方形ABCD顺时针旋转60,分别依据旋转的性质以及勾股定理,即可得到结论【详解】(1)AB=AD,CB=CD,点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,AC垂直平分BD,故答案为AC垂直平分BD;(2)四边形FMAN是矩形理由:如图2,连接AF,RtABC中,点F为斜边BC的中点,AF=CF=BF,又等腰三角形ABD 和等腰三角形ACE,AD=DB,AE=CE,由(1)可得,DFAB,EFAC,又BAC=90,AMF=MAN=ANF=90,四边形AMFN是矩形;(3)BD的平方为16+8或168分两种
23、情况:以点A为旋转中心将正方形ABCD逆时针旋转60,如图所示:过D作DEAB,交BA的延长线于E,由旋转可得,DAD=60,EAD=30,AB=2=AD,DE=AD=,AE=,BE=2+,RtBDE中,BD2=DE2+BE2=()2+(2+)2=16+8以点A为旋转中心将正方形ABCD顺时针旋转60,如图所示:过B作BFAD于F,旋转可得,DAD=60,BAD=30,AB=2=AD,BF=AB=,AF=,DF=2,RtBDF中,BD2=BF2+DF2=()2+(2-)2=168综上所述,BD平方的长度为16+8或168【点睛】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性
24、质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解解题时注意:有三个角是直角的四边形是矩形21、(1)证明见解析;(2)1.【解析】作PMAD,在四边形ABCD和四边形ABPM证ADPM;DFPG,得出GDH+DGH90,推出ADFMPG;还有两个直角即可证明ADFMPG,从而得出对应边相等(2)由已知得,DG2PC2;ADFMPG得出DFPD;根据旋转,得出EPG90,PEPG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公
25、式得出【详解】解:(1)证明:四边形ABCD为正方形,ADAB,四边形ABPM为矩形,ABPM,ADPM,DFPG,DHG90,GDH+DGH90,MGP+MPG90,GDHMPG,在ADF和MPG中,ADFMPG(ASA),DFPG;(2)作PMDG于M,如图,PDPG,MGMD,四边形ABCD为矩形,PCDM为矩形,PCMD,DG2PC2;ADFMPG(ASA),DFPG,而PDPG,DFPD,线段PG绕点P逆时针旋转90得到线段PE,EPG90,PEPG,PEPDDF,而DFPG,DFPE,即DFPE,且DFPE,四边形PEFD为平行四边形,在RtPCD中,PC1,CD3,PD,DFPG
26、PD,四边形CDMP是矩形,PMCD3,MDPC1,PDPG,PMAD,MGMD1,DG2,GDHMPG,DHGPMG90,DHGPMG,GH,PHPGGH,四边形PEFD的面积DFPH1【点睛】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值22、6+2【解析】分析:直接利用二次根式的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案详解:原式=16+1+3=5+1+=6+2点睛:此题主要考查了实数运算,正确化简各数是解题关键23、(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a
27、=3时,三种方案的费用一样,都是2240万元;当a3时,取m=48时费用最省;当0a3时,取m=50时费用最省.【解析】试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;(3)根据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论(1)设甲种套房每套提升费用为x万元,依题意,得解得:x=25经检验:x=25符合题意,x+3=28;答:甲,乙两种套房每套提升费用分别为25万元
28、,28万元(2)设甲种套房提升套,那么乙种套房提升(m-48)套,依题意,得解得:48m50即m=48或49或50,所以有三种方案分别是:方案一:甲种套房提升48套,乙种套房提升32套方案二:甲种套房提升49套,乙种套房提升1套方案三:甲种套房提升50套,乙种套房提升30套设提升两种套房所需要的费用为W.所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:当a=3时,三种方案的费用一样,都是2240万元.当a3时,取m=48时费用W最省.当0a3时,取m=50时费用最省.考点: 1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用24、35km【解析】试题分析:如图作CHAD于H设CH=xkm,在RtACH中,可得AH=,在RtCEH中,可得CH=EH=x,由CHBD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题试题解析:如图,作CHAD于H设CH=xkm,在RtACH中,A=37,tan37=,AH=,在RtCEH中,CEH=45,CH=EH=x,CHAD,BDAD,CHBD,AC=CB,AH=HD,=x+5,x=15,AE=AH+HE=+1535km,E处距离港口A有35km