《云南省文山市重点中学2022-2023学年高考仿真卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省文山市重点中学2022-2023学年高考仿真卷数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若某几何体的三视图如图所示,则该几何体的表面积为( )A240B264C274D2822已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为( )ABCD3已知等比数
2、列的前项和为,若,且公比为2,则与的关系正确的是( )ABCD4在中,点为中点,过点的直线与,所在直线分别交于点,若,则的最小值为( )AB2C3D5在中,“”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件6执行如图所示的程序框图,若输入,则输出的值为( )A0B1CD7 “哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数
3、全部为质数的概率为( )ABCD8ABCD9已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若则该双曲线的离心率为A2B3CD10是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则( )ABCD11已知是虚数单位,则复数( )ABC2D12函数,则“的图象关于轴对称”是“是奇函数”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13函数的单调增区间为_.14函数的最大值与最小正周期相同,则在上的单调递增区间为_.15二项式的展开式的各项系数之和为_,含项的系数为_16已知中,点
4、是边的中点,的面积为,则线段的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.18(12分)已知函数.(1)求不等式的解集;(2)若函数的最大值为,且,求的最小值.19(12分)已知x,y,z均为正数(1)若xy1,证明:|x+z|y+z|4xyz;(2)若,求2xy2yz2xz的最小值20(12分)已知函数.(1)求不等式的解集;(2)若正数、满足,求证:.21(12分)在四棱锥中,底面为直角梯形,面.(1)在线段上是否存在点,使面,说明理由;(2)求二面角的余弦值.22(10分)随着
5、互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用
6、“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,所以表面积.故选B项.【点睛】
7、本题考查三视图还原几何体,求组合体的表面积,属于中档题2、B【解析】由题意可得c=,设右焦点为F,由|OP|=|OF|=|OF|知,PFF=FPO,OFP=OPF,所以PFF+OFP=FPO+OPF,由PFF+OFP+FPO+OPF=180知,FPO+OPF=90,即PFPF在RtPFF中,由勾股定理,得|PF|=,由椭圆定义,得|PF|+|PF|=2a=4+8=12,从而a=6,得a2=36,于是 b2=a2c2=36=16,所以椭圆的方程为故选B点睛:椭圆的定义:到两定点距离之和为常数的点的轨迹,当和大于两定点间的距离时,轨迹是椭圆,当和等于两定点间的距离时,轨迹是线段(两定点间的连线段)
8、,当和小于两定点间的距离时,轨迹不存在3、C【解析】在等比数列中,由即可表示之间的关系.【详解】由题可知,等比数列中,且公比为2,故故选:C【点睛】本题考查等比数列求和公式的应用,属于基础题.4、B【解析】由,三点共线,可得,转化,利用均值不等式,即得解.【详解】因为点为中点,所以,又因为,所以因为,三点共线,所以,所以,当且仅当即时等号成立,所以的最小值为1故选:B【点睛】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.5、C【解析】由余弦函数的单调性找出的等价条件为,再利用大角对大边,结合正弦定理可判断出“”是“”的充分必要条件
9、.【详解】余弦函数在区间上单调递减,且,由,可得,由正弦定理可得.因此,“”是“”的充分必要条件.故选:C.【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.6、A【解析】根据输入的值大小关系,代入程序框图即可求解.【详解】输入,因为,所以由程序框图知,输出的值为.故选:A【点睛】本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.7、A【解析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3),
10、(4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题.8、A【解析】直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题9、D【解析】本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,即,
11、因为圆的半径为,是圆的半径,所以,因为,所以,三角形是直角三角形,因为,所以,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,将点坐标带入双曲线中可得,化简得,故选D。【点睛】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。10、B【解析】设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值【详解】由题意设四面体的棱长为,设为的
12、中点,以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,取的三等分点、如图,则,所以、,由题意设,和都是等边三角形,为的中点,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得,因为的轨迹为一段抛物线且为定值,则也为定值,可得,此时,则,.故选:B.【点睛】考查线面所成的角的求法,及正切值为定值时的情况,属于中等题11、A【解析】根据复数的基本运算求解即可.【详解】.故选:A【点睛】本题主要考查了复数的基本运算,属于基础题.12、B【解析】根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可【详解】设,若函数是上的奇函数,则,所以
13、,函数的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出导数,再在定义域上考虑导数的符号为正时对应的的集合,从而可得函数的单调增区间.【详解】函数的定义域为.,令,则,故函数的单调增区间为:.故答案为:.【点睛】本题考查导数在函数单调性中的应用,注意
14、先考虑函数的定义域,再考虑导数在定义域上的符号,本题属于基础题.14、【解析】利用三角函数的辅助角公式进行化简,求出函数的解析式,结合三角函数的单调性进行求解即可【详解】,则函数的最大值为2,周期,的最大值与最小正周期相同,得,则,当时,则当时,得,即函数在,上的单调递增区间为,故答案为:.【点睛】本题考查三角函数的性质、单调区间,利用辅助角公式求出函数的解析式是解决本题的关键,同时要注意单调区间为定义域的一个子区间15、 【解析】将代入二项式可得展开式各项系数之和,写出二项展开式通项,令的指数为,求出参数的值,代入通项即可得出项的系数.【详解】将代入二项式可得展开式各项系数和为.二项式的展开
15、式通项为,令,解得,因此,展开式中含项的系数为.故答案为:;.【点睛】本题考查了二项式定理及二项式展开式通项公式,属基础题16、【解析】设,利用正弦定理,根据,得到,再利用余弦定理得,平方相加得:,转化为 有解问题求解.【详解】设,所以, 即由余弦定理得,即 ,平方相加得:,即 ,令,设 ,在上有解,所以 ,解得,即 ,故答案为:【点睛】本题主要考查正弦定理和余弦定理在平面几何中的应用,还考查了运算求解的能力,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析【解析】(1),在上,因为是减函数,所以恒成立,即恒成立,只需.令,则,因为,所以.所以
16、在上是增函数,所以,所以,解得.所以实数的最大值为.(2),.令,则,根据题意知,所以在上是增函数. 又因为,当从正方向趋近于0时,趋近于,趋近于1,所以,所以存在,使, 即,所以对任意,即,所以在上是减函数;对任意,即,所以在上是增函数, 所以当时,取得最小值,最小值为.由于,则 ,当且仅当 ,即时取等号,所以当时,18、(1)(2)【解析】(1)化简得到,分类解不等式得到答案.(2)的最大值,利用均值不等式计算得到答案.【详解】(1)因为,故或或解得或,故不等式的解集为.(2)画出函数图像,根据图像可知的最大值.因为,所以,当且仅当时,等号成立,故的最小值是3.【点睛】本题考查了解不等式,
17、均值不等式求最值,意在考查学生的计算能力和转化能力.19、(1)证明见解析;(2)最小值为1【解析】(1)利用基本不等式可得 , 再根据0xy1时, 即可证明|x+z|y+z|4xyz.(2)由, 得,然后利用基本不等式即可得到xy+yz+xz3,从而求出2xy2yz2xz的最小值.【详解】(1)证明:x,y,z均为正数,|x+z|y+z|(x+z)(y+z),当且仅当xyz时取等号又0xy1,|x+z|y+z|4xyz;(2),即,当且仅当xyz1时取等号,xy+yz+xz3,2xy2yz2xz2xy+yz+xz1,2xy2yz2xz的最小值为1【点睛】本题考查了利用综合法证明不等式和利用基
18、本不等式求最值,考查了转化思想和运算能力,属中档题20、(1);(2)见解析【解析】(1)等价于()或()或(),分别解出,再求并集即可;(2)利用基本不等式及可得,代入可得最值.【详解】(1)等价于()或()或()由()得:由()得:由()得:.原不等式的解集为;(2),当且仅当,即时取等号,当且仅当即时取等号,.【点睛】本题考查分类讨论解绝对值不等式,考查三角不等式的应用及基本不等式的应用,是一道中档题.21、(1)存在;详见解析(2)【解析】(1)利用面面平行的性质定理可得,为上靠近点的三等分点,中点,证明平面平面即得;(2)过作交于,可得两两垂直,以分别为轴建立空间直角坐标系,求出长,
19、写出各点坐标,用向量法求二面角【详解】解:(1)当为上靠近点的三等分点时,满足面.证明如下,取中点,连结.即易得所以面面,即面(2)过作交于面,两两垂直,以分别为轴建立空间直角坐标系,如图,设面法向量,则,即取同理可得面的法向量综上可知锐二面角的余弦值为【点睛】本题考查立体几何中的存探索性命题,考查用空间向量法求二面角线面平行问题可通过面面平行解决,一定要掌握:立体几何中线线平行、线面平行、面面平行是相互转化、相互依存的求空间角一般是建立空间直角坐标系,用空间向量法求空间角22、(1);(2)680元.【解析】(1)根据题意,列方程,然后求解即可(2)根据题意,计算出10000元使用“余额宝”的利息为(元)和10000元使用“财富通”的利息为(元),得到所有可能的取值为560(元),700(元),840(元),然后根据所有可能的取值,计算出相应的概率,并列出的分布列表,然后求解数学期望即可【详解】(1)据题意,得,所以.(2)据,得这被抽取的7人中使用“余额宝”的有4人,使用“财富通”的有3人.10000元使用“余额宝”的利息为(元).10000元使用“财富通”的利息为(元).所有可能的取值为560(元),700(元),840(元).,.的分布列为560700840所以(元).【点睛】本题考查频数分布表以及分布列和数学期望问题,属于基础题