2023届山东省临沂市莒南县中考押题数学预测卷含解析.doc

上传人:茅**** 文档编号:87791283 上传时间:2023-04-17 格式:DOC 页数:16 大小:713KB
返回 下载 相关 举报
2023届山东省临沂市莒南县中考押题数学预测卷含解析.doc_第1页
第1页 / 共16页
2023届山东省临沂市莒南县中考押题数学预测卷含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2023届山东省临沂市莒南县中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省临沂市莒南县中考押题数学预测卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨

2、的部分每吨4元;超过6吨的,超出6吨的部分每吨6元该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨)34567频数1254xxA平均数、中位数 B众数、中位数 C平均数、方差 D众数、方差2如图,把一块直角三角板的直角顶点放在直尺的一边上,若1=40,则2的度数为()A50B40C30D253某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元ABCD4在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )ABCD5如图,在四边形ABCD中,如果ADC=BAC,那么下列条件中不能判定ADC和BAC相似的是()ADAC=ABC

3、BAC是BCD的平分线CAC2=BCCDD6图中三视图对应的正三棱柱是()ABCD7如图图形中,是中心对称图形的是( )ABCD8如图,在ABC和BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则ACB等于()AEDBBBEDCEBDD2ABF9据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为()A0.31010 B3109 C30108 D30010710在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11直线AB,B

4、C,CA的位置关系如图所示,则下列语句:点A在直线BC上;直线AB经过点C;直线AB,BC,CA两两相交;点B是直线AB,BC,CA的公共点,正确的有_(只填写序号)12如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,则劣弧AB 的长为 .(结果保留)13已知函数,当 时,函数值y随x的增大而增大14如图,在扇形AOB中,AOB=90,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_15观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_(用含n的代数式表示)16如果一个扇形的弧长等于它的半径

5、,那么此扇形成为“等边扇形”则半径为2的“等边扇形”的面积为 17函数y中,自变量x的取值范围是_三、解答题(共7小题,满分69分)18(10分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B和折痕OP设BP=t()如图,当BOP=300时,求点P的坐标;()如图,经过点P再次折叠纸片,使点C落在直线PB上,得点C和折痕PQ,若AQ=m,试用含有t的式子表示m;()在()的条件下,当点C恰好落在边OA上时,求点P的坐标(直接写出结果即可)19(5分)如图,在规格为88的边长

6、为1个单位的正方形网格中(每个小正方形的边长为1),ABC的三个顶点都在格点上,且直线m、n互相垂直(1)画出ABC关于直线n的对称图形ABC;(2)直线m上存在一点P,使APB的周长最小;在直线m上作出该点P;(保留画图痕迹)APB的周长的最小值为 (直接写出结果)20(8分)计算:2-1+20160-3tan30+|-|21(10分)如图,已知:ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE求证:MD=ME22(10分)如图,已知A(a,4),B(4,b)是一次函数与反比例函数图象的两个交点(1)若a1,求反比例函数的解析式及b的值;(2)在(1)的条件

7、下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?(3)若ab4,求一次函数的函数解析式23(12分)2019年8月山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态太职学院足球场作为一个重要比赛场馆占地面积约24300平方米总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了结来比原计划提前4天完成安装任务求原计划每天安装多少个座位24(14分)一次函数yx的图象如图所示,它与二次函数yax24axc的图象交于A

8、、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C(1)求点C的坐标;(2)设二次函数图象的顶点为D若点D与点C关于x轴对称,且ACD的面积等于3,求此二次函数的关系式;若CDAC,且ACD的面积等于10,求此二次函数的关系式参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案【详解】6吨和7吨的频数之和为4-x+x=4,频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即=5,对于不同的正整数x,中位数不会发生改变,

9、后两组频数和等于4,小于5,对于不同的正整数x,众数不会发生改变,众数依然是5吨.故选B【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键2、A【解析】由两直线平行,同位角相等,可求得3的度数,然后求得2的度数【详解】如图,1=40,3=1=40,2=90-40=50故选A【点睛】此题考查了平行线的性质利用两直线平行,同位角相等是解此题的关键3、B【解析】设商品进价为x元,则售价为每件0.8200元,由利润=售价-进价建立方程求出其解即可【详解】解:设商品的进价为x元,售价为每件0.8200元,由题意得0.82

10、00=x+40解得:x=120答:商品进价为120元故选:B【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键4、C【解析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形故此选项错误;B、不是轴对称图形,也不是中心对称图形故此选项错误;C、是轴对称图形,也是中心对称图形故此选项正确;D、是轴对称图形,但不是中心对称图形故此选项错误故选C【点睛】考点:1、中心对称图形;2、轴对称图形5、C【解析】结合图形,逐项进行分析即可.【详解】在ADC和BAC中,ADC=BAC,如果ADCBAC,需满足的条件有:DA

11、C=ABC或AC是BCD的平分线;,故选C【点睛】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.6、A【解析】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解【详解】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确故选A【点睛】本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键7、D【解析】根据中心对称图形的概念和识别【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形故选D【点睛】本题考查中心对称图形,掌握中心对

12、称图形的概念,会判断一个图形是否是中心对称图形8、C【解析】根据全等三角形的判定与性质,可得ACB=DBE的关系,根据三角形外角的性质,可得答案.【详解】在ABC和DEB中,所以ABCBDE(SSS),所以ACB=DBE.故本题正确答案为C.【点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.9、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.【详解】解:根据科学计数法的定义可得,3 000 000 000=3109,故选择B.【点睛】本题考查了科学计数法的定义,确定n的值是易错点.10、D【解析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数

13、图象的性质解答即可【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-10可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=1故选D【点睛】本题考查学生对计算程序及函数性质的理解根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据直线与点的位置关系即可求解【详解】点A在直线BC上是错误的;直线AB经过点C是错误的;直线AB,BC,CA两两相交是正确的;点B是直线AB,BC,CA的公共点是错误的故答案为【点睛】本题考查了直线、射线、线段,关键是熟练掌握直线、射线、

14、线段的定义12、8.【解析】试题分析: 因为AB为切线,P为切点,劣弧AB所对圆心角考点: 勾股定理;垂径定理;弧长公式.13、x1【解析】试题分析:=,a=10,抛物线开口向下,对称轴为直线x=1,当x1时,y随x的增大而增大,故答案为x1考点:二次函数的性质14、41【解析】分析:连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解详解:连接OC在扇形AOB中AOB=90,正方形CDEF的顶点C是的中点,COD=45,OC=CD=4,阴影部分的面积=扇形BOC的面积-三角形ODC的面积=4-1故答案是:4-1.点睛:考

15、查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度15、3n+1【解析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律【详解】解:由题意可知:每1个都比前一个多出了3个“”,第n个图案中共有“”为:4+3(n1)3n+1故答案为:3n+1.【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型16、1【解析】试题分析:根据题意可得圆心角的度数为:,则S=1考点:扇形的面积计算17、x1且x1【解析】由二次根式中被开方数为非负数且分母不等于零求解可得结论【详解】根据题意,得:,解得:x1

16、且x1故答案为x1且x1【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负三、解答题(共7小题,满分69分)18、()点P的坐标为(,1)()(0t11)()点P的坐标为(,1)或(,1)【解析】()根据题意得,OBP=90,OB=1,在RtOBP中,由BOP=30,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案()由OBP、QCP分别是由OBP、QCP折叠得到的,可知OBPOBP,QCPQCP,易

17、证得OBPPCQ,然后由相似三角形的对应边成比例,即可求得答案()首先过点P作PEOA于E,易证得PCECQA,由勾股定理可求得CQ的长,然后利用相似三角形的对应边成比例与,即可求得t的值:【详解】()根据题意,OBP=90,OB=1在RtOBP中,由BOP=30,BP=t,得OP=2tOP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=(舍去)点P的坐标为(,1)()OBP、QCP分别是由OBP、QCP折叠得到的,OBPOBP,QCPQCPOPB=OPB,QPC=QPCOPB+OPB+QPC+QPC=180,OPB+QPC=90BOP+OPB=90,BOP=CPQ又OBP=

18、C=90,OBPPCQ由题意设BP=t,AQ=m,BC=11,AC=1,则PC=11t,CQ=1m(0t11)()点P的坐标为(,1)或(,1)过点P作PEOA于E,PEA=QAC=90PCE+EPC=90PCE+QCA=90,EPC=QCAPCECQAPC=PC=11t,PE=OB=1,AQ=m,CQ=CQ=1m,即,即将代入,并化简,得解得:点P的坐标为(,1)或(,1)19、(1)详见解析;(2)详见解析;.【解析】(1)根据轴对称的性质,可作出ABC关于直线n的对称图形ABC;(2)作点B关于直线m的对称点B,连接BA与x轴的交点为点P;由ABP的周长=AB+AP+BP=AB+AP+B

19、P,则当AP与PB共线时,APB的周长有最小值【详解】解:(1)如图ABC为所求图形(2)如图:点P为所求点ABP的周长=AB+AP+BP=AB+AP+BP当AP与PB共线时,APB的周长有最小值APB的周长的最小值AB+AB=+3故答案为 +3【点睛】本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质20、 【解析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;【详解】原式= = =【点睛】此题考查实数的混合运算此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零

20、指数幂、特殊角的三角函数值、绝对值等考点的运算21、证明见解析.【解析】试题分析:根据等腰三角形的性质可证DBM=ECM,可证BDMCEM,可得MD=ME,即可解题试题解析:证明:ABC中,AB=AC,DBM=ECM.M是BC的中点,BM=CM.在BDM和CEM中,BDMCEM(SAS).MD=ME考点:1.等腰三角形的性质;2.全等三角形的判定与性质.22、 (1) 反比例函数的解析式为y,b的值为1;(1) 当x4或0x1时,反比例函数大于一次函数的值;(3) 一次函数的解析式为yx+1【解析】(1)由题意得到A(1,4),设反比例函数的解析式为y(k0),根据待定系数法即可得到反比例函数

21、解析式为y;再由点B(4,b)在反比例函数的图象上,得到b1;(1)由(1)知A(1,4),B(4,1),结合图象即可得到答案;(3)设一次函数的解析式为ymx+n(m0),反比例函数的解析式为y,因为A(a,4),B(4,b)是一次函数与反比例函数图象的两个交点,得到, 解得p8,a1,b1,则A(1,4),B(4,1),由点A、点B在一次函数ymx+n图象上,得到,解得,即可得到答案.【详解】(1)若a1,则A(1,4),设反比例函数的解析式为y(k0),点A在反比例函数的图象上,4,解得k4,反比例函数解析式为y;点B(4,b)在反比例函数的图象上,b1,即反比例函数的解析式为y,b的值

22、为1;(1)由(1)知A(1,4),B(4,1),根据图象:当x4或0x1时,反比例函数大于一次函数的值;(3)设一次函数的解析式为ymx+n(m0),反比例函数的解析式为y,A(a,4),B(4,b)是一次函数与反比例函数图象的两个交点,即,+得4a4b1p,ab4,161p,解得p8,把p8代入得4a8,代入得4b8,解得a1,b1,A(1,4),B(4,1),点A、点B在一次函数ymx+n图象上,解得一次函数的解析式为yx+1【点睛】本题考查一次函数与反比例函数,解题的关键是待定系数法求函数解析式.23、原计划每天安装100个座位【解析】根据题意先设原计划每天安装x个座位,列出方程再求解

23、.【详解】解:设原计划每天安装个座位,采用新技术后每天安装个座位, 由题意得: 解得: 经检验:是原方程的解 答:原计划每天安装100个座位【点睛】此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.24、(1)点C(1,);(1)yx1x; yx11x【解析】试题分析:(1)求得二次函数yax14axc对称轴为直线x1,把x1代入yx求得y=,即可得点C的坐标;(1)根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m) ,根据SACD3即可求得m的值,即求得点A的坐标,把A.D的坐标代入yax14axc得方程组,解得a、c的值即可得二次函数的表达式.

24、设A(m,m)(m1),过点A作AECD于E,则AE1m,CEm,根据勾股定理用m表示出AC的长,根据ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a0,则点D在点C下方,求点D的坐标;第二种情况,若a0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入yax14axc即可求得函数表达式.试题解析:(1)yax14axca(x1)14ac二次函数图像的对称轴为直线x1当x1时,yx,C(1,)(1)点D与点C关于x轴对称,D(1,),CD3.设A(m,m) (m1),由SACD3,得3(1m)3,解得m0,A(0,0).由A(0,0)、 D(1,)得解得a,c0.yx1x.设A(m,m)(m1),过点A作AECD于E,则AE1m,CEm,AC(1m),CDAC,CD(1m).由SACD10得(1m)110,解得m1或m6(舍去),m1A(1,),CD5.若a0,则点D在点C下方,D(1,),由A(1,)、D(1,)得解得yx1x3.若a0,则点D在点C上方,D(1,),由A(1,)、D(1,)得解得yx11x.考点:二次函数与一次函数的综合题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁