《山东省临沂市莒南县市级名校2023年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省临沂市莒南县市级名校2023年中考冲刺卷数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1我国第一艘航母“辽宁舰”最大排水量为67
2、500吨,用科学记数法表示这个数字是A6.75103吨B67.5103吨C6.75104吨D6.75105吨2如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则DEF的面积与BAF的面积之比为( )A3:4B9:16C9:1D3:13实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()AacbcB|ab|abCacbcDbc4下列各式中计算正确的是ABCD5上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划
3、才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()ABCD6如图,将ABC沿着点B到C的方向平移到DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A42B96C84D487如图,RtABC中,ACB90,AB5,AC4,CDAB于D,则tanBCD的值为()ABCD8一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积()A65B90C25D859如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是( )ABCD10若数a使关于x的不等式组有解且所有解都是2x+60的解,且使关于y的分式方
4、程+3=有整数解,则满足条件的所有整数a的个数是()A5B4C3D2二、填空题(共7小题,每小题3分,满分21分)11已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_.12如图,在ABC中,ACB90,A30,BC4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为_13如图,在ABC中,BE平分ABC,DEBC,如果DE=2AD,AE=3,那么EC=_14如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函
5、数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D当ODAD3时,这两个二次函数的最大值之和等于_15如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要_枚棋子16如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_m.17在ABC中,点D在边BC上,且BD:DC=1:2,如果设=, =,那么等于_(结果用、的线性组合表示)三、解答题(共7小题,满分69分)18(10分)如图,在正方形ABCD
6、中,AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求EAF的度数如图,在RtABD中,BAD=90,AB=AD,点M,N是BD边上的任意两点,且MAN=45,将ABM绕点A逆时针旋转90至ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由在图中,若EG=4,GF=6,求正方形ABCD的边长19(5分)在矩形ABCD中,两条对角线相交于O,AOB=60,AB=2,求AD的长20(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图请结合以上信息解答下列问题:m=
7、;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动21(10分)有一个二次函数满足以下条件:函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);对称轴是x3;该函数有最小值是1(1)请根据以上信息求出二次函数表达式;(1)将该函数图象xx1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),结合画出的函数图象求x3+x4+x5的取值范围22(10分)某中学九年级甲、乙
8、两班商定举行一次远足活动,、两地相距10千米,甲班从地出发匀速步行到地,乙班从地出发匀速步行到地.两班同时出发,相向而行.设步行时间为小时,甲、乙两班离地的距离分别为千米、千米,、与的函数关系图象如图所示,根据图象解答下列问题:直接写出、与的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离地多少千米?甲、乙两班相距4千米时所用时间是多少小时? 23(12分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图请结合图中的信息解答下列问题:(1)本
9、次抽查测试的学生人数为 ,图中的a的值为 ;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数24(14分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作P,则称点Q为P的“关联点”,P为点Q的“关联圆”(1)已知O的半径为1,在点E(1,1),F(,),M(0,-1)中,O的“关联点”为_;(2)若点P(2,0),点Q(3,n),Q为点P的“关联圆”,且Q的半径为,求n的值;(3)已知点D(0,2),点H(m,2),D是点H的“关联圆”,直线yx+4与x轴,y轴分别交于点A,B若线段AB上存在D的“关联点”,求m的取值范围参考答案一、选择题(每小题只有一个正
10、确答案,每小题3分,满分30分)1、C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)67500一共5位,从而67 500=6.752故选C2、B【解析】可证明DFEBFA,根据相似三角形的面积之比等于相似比的平方即可得出答案【详解】四边形ABCD为平行四边形,DCAB,DFEBFA,DE:EC=3:1,DE:DC=3:4,DE:AB=3:4,SDFE
11、:SBFA=9:1故选B3、A【解析】根据数轴上点的位置确定出a,b,c的范围,判断即可【详解】由数轴上点的位置得:ab0c,acbc,|ab|ba,bc,acbc.故选A【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键4、B【解析】根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断【详解】A. ,故错误. B. ,正确.C. ,故错误.D. , 故错误.故选B.【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.5、B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,
12、速快跑距离变化快,可得答案详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选B点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键6、D【解析】由平移的性质知,BE=6,DE=AB=10,OE=DEDO=104=6,S四边形ODFC=S梯形ABEO=(AB+OE)BE=(10+6)6=1故选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.7、D【解析】先求得ABCD,然后根据锐角三角函数的概念求解即可【详解】解:ACB90,AB5,AC4,BC3,在RtABC
13、与RtBCD中,A+B90,BCD+B90ABCDtanBCDtanA,故选D【点睛】本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值8、B【解析】根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可【详解】由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长=13,所以圆锥的表面积=52+2513=90故选B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长
14、也考查了三视图9、C【解析】试题解析:左视图如图所示:故选C.10、D【解析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可【详解】不等式组整理得:,由不等式组有解且都是2x+60,即x-3的解,得到-3a-13,即-2a4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键二、填空题(共7小题,每小题3分,满分21分)11、16或1【解析】题目给出等腰三角形有两条边长为5和
15、6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】(1)当三角形的三边是5,5,6时,则周长是16;(2)当三角形的三边是5,6,6时,则三角形的周长是1;故它的周长是16或1故答案为:16或1【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键12、1;【解析】分析:根据辅助线做法得出CFAB,然后根据含有30角的直角三角形得出AB和BF的长度,从而得出AF的长度详解:根据作图法则可得:CFAB, ACB=90,A
16、=30,BC=4,AB=2BC=8, CFB=90,B=10, BF=BC=2,AF=ABBF=82=1点睛:本题主要考查的是含有30角的直角三角形的性质,属于基础题型解题的关键就是根据作图法则得出直角三角形13、1【解析】由BE平分ABC,DEBC,易得BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案【详解】解:DEBC,DEB=CBE,BE平分ABC,ABE=CBE,ABE=DEB,BD=DE,DE=2AD,BD=2AD,DEBC,AD:DB=AE:EC,EC=2AE=23=1故答案为:1【点睛】此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质注意
17、掌握线段的对应关系是解此题的关键14、【解析】此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题【详解】过B作BFOA于F,过D作DEOA于E,过C作CMOA于M,则BF+CM是这两个二次函数的最大值之和,BFDECM,求出AE=OE=2,DE= ,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出OBFODE,ACMADE,得出= ,代入求出BF和CM,相加即可求出答案过B作BFOA于F,过D作DEOA于E,过C作CMOA于M,BFOA,DEOA,CMOA,BFDECMOD=AD=3,DEOA,OE=EA= OA=2,由
18、勾股定理得:DE= =5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,BFDECM,OBFODE,ACMADE,AM=PM= (OA-OP)= (4-2x)=2-x,即,解得:BF+CM= 故答案为【点睛】考核知识点:二次函数综合题熟记性质,数形结合是关键.15、1【解析】根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+611个,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数【详解】根据题意分析可得:第1个图案中棋子的个数5个第2个图案中棋子的个数5+611个每个图形都比前一个图形多用6个第30个图案中棋子的个数为5+2961个故
19、答案为1【点睛】考核知识点:图形的规律.分析出一般数量关系是关键.16、7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m17、【解析】根据三角形法则求出即可解决问题;【详解】如图,=, =,=+=-,BD=BC,=故答案为【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型三、解答题(共7小题,满分69分)18、 (1) 45(1) MN1=ND1+DH1理由见解析;(3)11.【解析】(1)先根据AGEF得出ABE和AGE是直角三角形,再根据HL定理得出ABEAGE,故可得出BAE=GAE,同理可得出GAF=DAF,由此可得出结论;(1)由旋转的性质得出B
20、AM=DAH,再根据SAS定理得出AMNAHN,故可得出MN=HN再由BAD=90,AB=AD可知ABD=ADB=45,根据勾股定理即可得出结论;(3)设正方形ABCD的边长为x,则CE=x-4,CF=x-2,再根据勾股定理即可得出x的值【详解】解:(1)在正方形ABCD中,B=D=90,AGEF,ABE和AGE是直角三角形在RtABE和RtAGE中,ABEAGE(HL),BAE=GAE同理,GAF=DAFEAF=EAG+FAG=BAD=45(1)MN1=ND1+DH1由旋转可知:BAM=DAH,BAM+DAN=45,HAN=DAH+DAN=45HAN=MAN在AMN与AHN中,AMNAHN(
21、SAS),MN=HNBAD=90,AB=AD,ABD=ADB=45HDN=HDA+ADB=90NH1=ND1+DH1MN1=ND1+DH1(3)由(1)知,BE=EG=4,DF=FG=2设正方形ABCD的边长为x,则CE=x-4,CF=x-2CE1+CF1=EF1,(x-4)1+(x-2)1=101解这个方程,得x1=11,x1=-1(不合题意,舍去)正方形ABCD的边长为11【点睛】本题考查的是几何变换综合题,涉及到三角形全等的判定与性质、勾股定理、正方形的性质等知识,难度适中19、【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由AOB=60可得AOB是等边三角形,
22、从而得到OB=OA=2,则BD=4,最后在RtABD中,由勾股定理可解得AD的长.试题解析:四边形ABCD是矩形,OA=OB=OD,BAD=90,AOB=60,AOB是等边三角形,OB=OA=2, BD=2OB=4,在RtABD中AD=.20、(1)150,(2)36,(3)1【解析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=15020%=30人,补全上面的条形统计图即可;(3)360乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可【详解】(1)m=2114%=150,(2)“足球“的人数=15020%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所
23、对应扇形的圆心角的度数为360=36;(4)120020%=1人,答:估计该校约有1名学生最喜爱足球活动故答案为150,36,1【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键21、(1)y=(x3)11;(1)11x3+x4+x59+1【解析】(1)利用二次函数解析式的顶点式求得结果即可;(1)由已知条件可知直线与图象“G”要有3个交点分类讨论:分别求得平行于x轴的直线与图象“G”有1个交点、1个交点时x3x4x5的取值范围,易得直线与图象“G”要有3个交点时x3x4x5的取值范围【详解】(1)有上述信息可知该函数图象的顶点坐标为:(3,1)设二次函数表达式为:
24、y=a(x3)11该图象过A(1,0)0=a(13)11,解得a=表达式为y=(x3)11(1)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,x3+x4+x511,当直线过y=(x3)11的图象顶点时,有1个交点,由翻折可以得到翻折后的函数图象为y=(x3)1+1,令(x3)1+1=1时,解得x=3+1或x=31(舍去)x3+x4+x59+1综上所述11x3+x4+x59+1【点睛】考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较
25、强,需要注意“数形结合”数学思想的应用22、(1)y1=4x,y2=-5x+1(2)km(3)h【解析】(1)由图象直接写出函数关系式;(2)若相遇,甲乙走的总路程之和等于两地的距离.【详解】(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=5x+1.(2)由图象可知甲班速度为4km/h,乙班速度为5km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=1,解得x=.当x=时,y2=5+1=,相遇时乙班离A地为km.(3)甲、乙两班首次相距4千米,即两班走的路程之
26、和为6km,故4x+5x=6,解得x=h.甲、乙两班首次相距4千米时所用时间是h.23、(1)50、2;(2)平均数是7.11;众数是1;中位数是1【解析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得【详解】(1)本次抽查测试的学生人数为1421%=50人,a%=100%=2%,即a=2故答案为50、2;(2)观察条形统计图,平均数为=7.11在这组数据中,1出现了20次,出现的次数最多,这组数据的众数是1将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,=1,这组数据的中位数是1【点睛】本题考查了众数、平均数
27、和中位数的定义用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数平均数是指在一组数据中所有数据之和再除以数据的个数24、(1)F,M;(1)n1或1;(3)m或 m【解析】(1)根据定义,认真审题即可解题,(1)在直角三角形PHQ中勾股定理解题即可,(3)当D与线段AB相切于点T时,由sinOBA=,得DTDH1,进而求出m1=即可,当D过点A时,连接AD由勾股定理得DADH1即可解题.【详解】解:(1)OFOM1,点F、点M在上,F、M是O的“关联点”,故答案为F,M(1)如图1,过点Q作QHx轴于HPH1,QHn,PQ.由勾股定理得,PH1+QH1PQ1,即11+n1=()1,解得,n1或1(3)由yx+4,知A(3,0),B(0,4)可得AB5如图1(1),当D与线段AB相切于点T时,连接DT则DTAB,DTB90sinOBA=,可得DTDH1,m1=,如图1(1),当D过点A时,连接AD由勾股定理得DADH1综合可得:m或 m【点睛】本题考查圆的新定义问题, 三角函数和勾股定理的应用,难度较大,分类讨论,迁移知识理解新定义是解题关键.