《2023届四川省成都市泡桐树中学中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川省成都市泡桐树中学中考数学模拟试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图图形中,是中心对称图形的是( )ABCD2某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A180元B200元C225元D259.2元3甲、乙两车从A地出发,匀速驶向B地甲车以80km/h的速度行驶1
2、h后,乙车才沿相同路线行驶乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示下列说法:乙车的速度是120km/h;m160;点H的坐标是(7,80);n7.1其中说法正确的有()A4个B3个C2个D1个4如果,则a的取值范围是( )Aa0Ba0Ca0Da05下列运算正确的是( )A=x5BC=D3+2 6下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )ABCD7如图是一个由4个相同的正方体组成的立体图形,它的主视图是()ABCD8如图,正方形ABCD的对角线
3、AC与BD相交于点O,ACB的角平分线分别交AB,BD于M,N两点若AM2,则线段ON的长为( )ABC1D9若23,则a的值可以是()A7BCD1210如图,在正方形ABCD中,点E,F分别在BC,CD上,AEAF,AC与EF相交于点G,下列结论:AC垂直平分EF;BE+DFEF;当DAF15时,AEF为等边三角形;当EAF60时,SABESCEF,其中正确的是()ABCD11若关于x的不等式组只有5个整数解,则a的取值范围( )ABCD12正比例函数y2kx的图象如图所示,则y(k2)x1k的图象大致是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13O的半径为10cm
4、,AB,CD是O的两条弦,且ABCD,AB=16cm,CD=12cm则AB与CD之间的距离是 cm14某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_元.15如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,ADDC,则C_度.16如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角AMB为22.5,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A的俯角ANB为45,则电视塔AB的高度为_米(结果保留根号)17一个盒子内装有大小、形状相同的四个球,其中
5、红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_.18关于的一元二次方程有两个相等的实数根,则_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和1;乙袋中有三个完全相同的小球,分别标有数字1、0和1小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y)(1)请用表格或树状图列出点P所有可能的坐标;(1)求点P在一次函数yx1图象上的概率20(6分)如图,在矩形A
6、BCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,BC与AD交于点E,AD的延长线与AD交于点F(1)如图,当=60时,连接DD,求DD和AF的长;(2)如图,当矩形ABCD的顶点A落在CD的延长线上时,求EF的长;(3)如图,当AE=EF时,连接AC,CF,求ACCF的值21(6分)先化简,再求值:,其中满足.22(8分)如图1,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx+c(a0)相交于点A(1,0)和点D(4,5),并与y轴交于点C,抛物线的对称轴为直线x=1,且抛物线与x轴交于另一点B(1)求该抛物线的函数表达式;(2)若点E是直线
7、下方抛物线上的一个动点,求出ACE面积的最大值;(3)如图2,若点M是直线x=1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由23(8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队
8、工作多少天?24(10分)中华文明,源远流长;中华汉字,寓意深广为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整请你根据统计图解答下列问题:参加比赛的学生共有_名;在扇形统计图中,m的值为_,表示“D等级”的扇形的圆心角为_度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率25(10分)如图,分别以线段AB两端点A,B为圆心,以大于
9、AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DEAB,BECD(1)判断四边形ACBD的形状,并说明理由;(2)求证:ME=AD26(12分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元 (进价、售价均保持不变,利润销售收入进货成本)求A,B两种型号的电风扇的销售单价若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的
10、目标?若能,请给出相应的采购方案;若不能,请说明理由27(12分)如图,在ABC中,A45,以AB为直径的O经过AC的中点D,E为O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为O的切线;若F为OA的中点,O的半径为2,求BE的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据中心对称图形的概念和识别【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形故选D【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心
11、对称图形2、A【解析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程2700.8x0.2x,解得x180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.3、B【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲则说明乙每小时比甲快40km,则乙的速度为120km/h正确;由图象第26小时,乙由相遇点到达B,用时4小时,每小时比甲快4
12、0km,则此时甲乙距离440=160km,则m=160,正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),正确;乙返回时,甲乙相距80km,到两车相遇用时80(120+80)=0.4小时,则n=6+1+0.4=7.4,错误故选B【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态4、C【解析】根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1若|-a|=-a,则可求得a的取值范围注意1的相反数是1【详解】因为|-a|1,所以-a1,那么a的取值范围是a1故选C【点
13、睛】绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是15、B【解析】根据幂的运算法则及整式的加减运算即可判断.【详解】A. =x6,故错误;B. ,正确;C. =,故错误; D. 3+2 不能合并,故错误,故选B.【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.6、C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C7、D【解析】从正面看,有2层,3列,左侧一列
14、有1层,中间一列有2层,右侧一列有一层,据此解答即可.【详解】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,D是该几何体的主视图.故选D.【点睛】本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.8、C【解析】作MHAC于H,如图,根据正方形的性质得MAH=45,则AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明CONCHM,再利用相似比可计
15、算出ON的长【详解】试题分析:作MHAC于H,如图,四边形ABCD为正方形,MAH=45,AMH为等腰直角三角形,AH=MH=AM=2=,CM平分ACB,BM=MH=,AB=2+,AC=AB=(2+)=2+2,OC=AC=+1,CH=ACAH=2+2=2+,BDAC,ONMH,CONCHM,即,ON=1故选C【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形也考查了角平分线的性质和正方形的性质9、C【解析】根据已知条件得到4a-29,由此求得a的取值范围
16、,易得符合条件的选项【详解】解:23,4a-29,6a1又a-20,即a2a的取值范围是6a1观察选项,只有选项C符合题意故选C【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法10、C【解析】通过条件可以得出ABEADF,从而得出BAE=DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;当DAF=15时,可计算出EAF=60,即可判断EAF为等边三角形,当EAF=60时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与
17、EF,利用三角形的面积公式分别表示出SCEF和SABE,再通过比较大小就可以得出结论【详解】四边形ABCD是正方形,ABAD,B=D=90在RtABE和RtADF中,RtABERtADF(HL),BE=DFBC=CD,BC-BE=CD-DF,即CE=CF,AE=AF,AC垂直平分EF(故正确)设BC=a,CE=y,BE+DF=2(a-y)EF=y,BE+DF与EF关系不确定,只有当y=(2)a时成立,(故错误)当DAF=15时,RtABERtADF,DAF=BAE=15,EAF=90-215=60,又AE=AFAEF为等边三角形(故正确)当EAF=60时,设EC=x,BE=y,由勾股定理就可以
18、得出:(x+y)2+y2(x)2x2=2y(x+y)SCEF=x2,SABE=y(x+y),SABE=SCEF(故正确)综上所述,正确的有,故选C【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键11、A【解析】分别解两个不等式得到得x20和x3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2ax20,且整数解为15、16、17、18、19,得到143-2a15,然后再解关于a的不等式组即可【详解】解得x20解得x3-2a,不等式组只有5个整数解,不等式组的解集为
19、3-2ax20,143-2a15,故选:A【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式143-2a15是解此题的关键12、B【解析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,2k0,得k0,k20,函数y=(k2)x+1k图象经过一、二、四象限,故选B.二、填空题:(本大题共6个小题,每小题4分,共24分)13、2或14【解析】分两种情况进行讨论:弦AB和CD在圆心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】当弦AB和CD在圆心同侧时,如图,AB=16cm,CD=
20、12cm,AE=8cm,CF=6cm,OA=OC=10cm,EO=6cm,OF=8cm,EF=OFOE=2cm;当弦AB和CD在圆心异侧时,如图,AB=16cm,CD=12cm,AF=8cm,CE=6cm,OA=OC=10cm,OF=6cm,OE=8cm,EF=OF+OE=14cm.AB与CD之间的距离为14cm或2cm.故答案为:2或14.14、28【解析】设这种电子产品的标价为x元,由题意得:0.9x21=2120%,解得:x=28,所以这种电子产品的标价为28元故答案为28.15、1【解析】利用圆周角定理得到ADB=90,再根据切线的性质得ABC=90,然后根据等腰三角形的判定方法得到A
21、BC为等腰直角三角形,从而得到C的度数【详解】解:AB为直径,ADB=90,BC为切线,ABBC,ABC=90,AD=CD,ABC为等腰直角三角形,C=1故答案为1【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径也考查了等腰直角三角形的判定与性质16、【解析】解:如图,连接AN,由题意知,BMAA,BA=BA,AN=AN,ANB=ANB=45,AMB=22.5,MAN=ANBAMB=22.5=AMN,AN=MN=200米,在RtABN中,ANB=45,AB=AN=(米),故答案为点睛:此题是解直角三角形的应用仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出
22、ANB=4517、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案【详解】画树状图得: 共有12种等可能的结果,两次都摸到白球的有2种情况,两次都摸到白球的概率是:=.故答案为:.【点睛】本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.18、-1.【解析】根据根的判别式计算即可.【详解】解:依题意得:关于的一元二次方程有两个相等的实数根,= =4-41(-k)=4+4k=0解得,k=-1.故答案为:-1.【点睛】本题考查了一元二次方程根的判别式,当=0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当
23、=0时,方程无实数根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(1).【解析】试题分析:(1)画出树状图(或列表),根据树状图(或表格)列出点P所有可能的坐标即可;(1)根据(1)的所有结果,计算出这些结果中点P在一次函数图像上的个数,即可求得点P在一次函数图像上的概率.试题解析:(1)画树状图:或列表如下:点P所有可能的坐标为(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).只有(1,1)与(-1,-1)这两个点在一次函数图像上,P(点P在一次函数图像上)=.考点:用(树状图或列表法)求概率.20、(1)D
24、D=1,AF= 4;(2);(1)【解析】(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,只要证明CDD是等边三角形即可解决问题;如图中,连接CF,在RtCDF中,求出FD即可解决问题;(2)由ADFADC,可推出DF的长,同理可得CDECBA,可求出DE的长,即可解决问题;(1)如图中,作FGCB于G,由SACF=ACCF=AFCD,把问题转化为求AFCD,只要证明ACF=90,证明CADFAC,即可解决问题;【详解】解:(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,AD=AD=BC=BC=4,CD=CD=AB=AB=1ADC=ADC=90=60
25、,DCD=60,CDD是等边三角形,DD=CD=1如图中,连接CFCD=CD,CF=CF,CDF=CDF=90,CDFCDF,DCF=DCF=DCD=10在RtCDF中,tanDCF=,DF=,AF=ADDF=4(2)如图中,在RtACD中,D=90,AC2=AD2+CD2,AC=5,AD=2DAF=CAD,ADF=D=90,ADFADC,DF=同理可得CDECBA,ED=,EF=ED+DF=(1)如图中,作FGCB于G四边形ABCD是矩形,GF=CD=CD=1SCEF=EFDC=CEFG,CE=EF,AE=EF,AE=EF=CE,ACF=90ADC=ACF,CAD=FAC,CADFAC,AC
26、2=ADAF,AF=SACF=ACCF=AFCD,ACCF=AFCD=21、1【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值试题解析:原式= x2x1=0,x2=x+1,则原式=1.22、(1)y=x2+2x3;(2);(3)详见解析.【解析】试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;(2)过点E作EFy轴,交AD与点F,过点C作CHEF,垂足为H设点E(m,m
27、2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据ACE的面积=EFA的面积-EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得ACE的最大值即可;(3)当AD为平行四边形的对角线时设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据,可求得a的值;当AD为平行四边形的边时设点M的坐标为(-1,a)则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值试题解析:(1)A(1,0),抛物线的对称轴为直线x1,B(3,0),设抛物
28、线的表达式为ya(x3)(x1),将点D(4,5)代入,得5a5,解得a1,抛物线的表达式为yx22x3;(2)过点E作EFy轴,交AD与点F,交x轴于点G,过点C作CHEF,垂足为H.设点E(m,m22m3),则F(m,m1)EFm1m22m3m23m4.SACESEFASEFCEFAGEFHCEFOA (m)2.ACE的面积的最大值为;(3)当AD为平行四边形的对角线时:设点M的坐标为(1,a),点N的坐标为(x,y)平行四边形的对角线互相平分,解得x2,y5a,将点N的坐标代入抛物线的表达式,得5a3,解得a8,点M的坐标为(1,8),当AD为平行四边形的边时:设点M的坐标为(1,a),
29、则点N的坐标为(6,a5)或(4,a5),将x6,ya5代入抛物线的表达式,得a536123,解得a16,M(1,16),将x4,ya5代入抛物线的表达式,得a51683,解得a26,M(1,26),综上所述,当点M的坐标为(1,26)或(1,16)或(1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形23、(1)111,51;(2)11.【解析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可【详解】解:(1)设乙工
30、程队每天能完成绿化的面积是x(m2),根据题意得:解得:x=51, 经检验x=51是原方程的解, 则甲工程队每天能完成绿化的面积是512=111(m2),答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;(2)设应安排甲队工作y天,根据题意得: 1.4y+1258,解得:y11, 答:至少应安排甲队工作11天24、(1)20;(2)40,1;(3)【解析】试题分析:(1)根据等级为A的人数除以所占的百分比求出总人数;(2)根据D级的人数求得D等级扇形圆心角的度数和m的值;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率试题解析:解:(1)根据题意得:3
31、15%=20(人),故答案为20;(2)C级所占的百分比为100%=40%,表示“D等级”的扇形的圆心角为360=1;故答案为40、1(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生= =25、(1)四边形ACBD是菱形;理由见解析;(2)证明见解析.【解析】(1)根据题意得出,即可得出结论;(2)先证明四边形是平行四边形,再由菱形的性质得出,证明四边形是矩形,得出对角线相等,即可得出结论.【详解】(1)解:四边形ACBD是菱形;理由如下:根据题意得:AC=BC=BD=AD,四边形ACBD是菱形(四条边相等的四边形是菱形);(2)证
32、明:DEAB,BECD,四边形BEDM是平行四边形,四边形ACBD是菱形,ABCD,BMD=90,四边形ACBD是矩形,ME=BD,AD=BD,ME=AD【点睛】本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.26、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标【解析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B
33、型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标【详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台依题意,得解得答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30a)台依题意,得200a170(30a)5400,解得a10.答:A种型号的电风扇最多能采购10台(3)依题意,有(250200)a(210170)(30
34、a)1400,解得a20.a10,在(2)的条件下超市不能实现利润为1400元的目标【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解27、(1)证明见解析;(2)【解析】(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明ABC=90即可;(2)连接OD,根据已知条件求得AD、DF的长,再证明AFDEFB,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD,AB为O的直径,BDAC,D是AC的中点,BC=AB,C=A45,ABC=90,BC是O的切线;(2)连接OD,由(1)可得AOD=90,O的半径为2, F为OA的中点,OF=1, BF=3,E=A,AFD=EFB,AFDEFB,即,.【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.