《2023届四川省遂宁市安居区中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川省遂宁市安居区中考考前最后一卷数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()AB1CD2如图是由5个大小
2、相同的正方体搭成的几何体,这个几何体的俯视图是()ABCD3二次函数y=ax+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:x-1013y 33下列结论:(1)abc0(2)当x1时,y的值随x值的增大而减小;(3)16a+4b+c0(4)x=3是方程ax+(b-1)x+c=0的一个根;其中正确的个数为( )A4个B3个C2个D1个4在ABC中,C90,AC9,sinB,则AB( )A15B12C9D65已知,代数式的值为( )A11B1C1D116下列几何体中,其三视图都是全等图形的是()A圆柱B圆锥C三棱锥D球7如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方
3、体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是()ABCD8如图,ABBD,CDBD,垂足分别为B、D,AC和BD相交于点E,EFBD垂足为F则下列结论错误的是()ABCD9如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )A30,28 B26,26 C31,30 D26,2210已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取( )A11;B6;C3;D111如图,ABC是O的内接三角形,BOC120,则A等于()A50B60C55D6512计算aa2的结果是
4、()Aa Ba2 C2a2 Da3二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2019次运动后,动点P的坐标是_14如图,AE是正八边形ABCDEFGH的一条对角线,则BAE= 15如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_16某航班每次飞行约有111名乘客,若飞机失事的概率为p=1111 15,一家保险公司要为乘客保险,许
5、诺飞机一旦失事,向每位乘客赔偿41万元人民币 平均来说,保险公司应向每位乘客至少收取_元保险费才能保证不亏本17如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_.18若n边形的内角和是它的外角和的2倍,则n= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中
6、甲、乙两位同学的概率20(6分)如图,BAD是由BEC在平面内绕点B旋转60而得,且ABBC,BECE,连接DE求证:BDEBCE;试判断四边形ABED的形状,并说明理由21(6分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一(1)求甲、乙两队合作完成这项工程需要多少天?(2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合
7、作多少天?22(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.1714b880.16合计50c我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.1(1)统计表中的a、b、c的值;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年
8、级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程23(8分)某校计划购买篮球、排球共20个购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案24(10分)对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点(1)当直线m的表达式为yx时,在点,中,直线m的平行点是_;O的半径为,
9、点Q在O上,若点Q为直线m的平行点,求点Q的坐标(2)点A的坐标为(n,0),A半径等于1,若A上存在直线的平行点,直接写出n的取值范围25(10分)如图,儿童游乐场有一项射击游戏从O处发射小球,将球投入正方形篮筐DABC正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3)小球按照抛物线yx2+bx+c 飞行小球落地点P 坐标(n,0)(1)点C坐标为 ;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)验证:随着n的变化,抛物线的顶点在函数yx2的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围26(12分)如图,ABC是O的内接三
10、角形,AB是O的直径,OFAB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且ACE+AFO=180.求证:EM是O的切线;若A=E,BC=,求阴影部分的面积.(结果保留和根号).27(12分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30,测得大楼顶端A的仰角为45(点B,C,E在同一水平直线上)已知AB80m,DE10m,求障碍物B,C两点间的距离(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】由旋转的性质得到AB=BE,根据菱形
11、的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到BAC=30,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,AB=BE,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD=,tanCAB=,BAC=30,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90,四边形OBGM是矩形,OM=BG=BC=,HM=OHOM=,故选D【点睛】本题考查了旋转的性质,菱形
12、的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.2、A【解析】分析:根据从上面看得到的图形是俯视图,可得答案详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图3、B【解析】(1)利用待定系数法求出二次函数解析式为y=-x2+x+3,即可判定正确;(2)求得对称轴,即可判定此结论错误;(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确【详解】(1)x=-1时y=-,x=0时
13、,y=3,x=1时,y=,解得abc0,故正确;(2)y=-x2+x+3,对称轴为直线x=-=,所以,当x时,y的值随x值的增大而减小,故错误;(3)对称轴为直线x=,当x=4和x=-1时对应的函数值相同,16a+4b+c0,故正确;(4)当x=3时,二次函数y=ax2+bx+c=3,x=3是方程ax2+(b-1)x+c=0的一个根,故正确;综上所述,结论正确的是(1)(3)(4)故选:B【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键4、A【解析】根据三角函数的定义直接求解.【详解】在RtA
14、BC中,C90,AC9,解得AB1故选A5、D【解析】根据整式的运算法则,先利用已知求出a的值,再将a的值带入所要求解的代数式中即可得到此题答案.【详解】解:由题意可知:,原式故选:D【点睛】此题考查整式的混合运算,解题的关键在于利用整式的运算法则进行化简求得代数式的值6、D【解析】分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.7、B【解析】俯视图是
15、从上面看几何体得到的图形,据此进行判断即可【详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得拿掉第一排的小正方形,拿掉这个小立方体木块之后的几何体的俯视图是,故选B【点睛】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形8、A【解析】利用平行线的性质以及相似三角形的性质一一判断即可【详解】解:ABBD,CDBD,EFBD,ABCDEFABEDCE,故选项B正确,EFAB,故选项C,D正确,故选:A【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属
16、于中考常考题型9、B【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1平均数是(222+23+1+28+30+31)7=1,所以平均数是1故选B考点:中位数;加权平均数10、D【解析】圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,当d4+7或d11或d两圆半径的和;(1)两圆内含,此时圆心距大圆半径-小圆半径.11、B【解析】由圆周角定理即可解答.【详解】ABC是O的内接三角形,A BOC,而BOC120,A60.故选B【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.12、D【解析】
17、aa2= a3.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分)13、(2019,2)【解析】分析点P的运动规律,找到循环次数即可【详解】分析图象可以发现,点P的运动每4次位置循环一次每循环一次向右移动四个单位2019=4504+3当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环14、67.1【解析】试题分析:图中是正八边形,各内角度数和=(82)180=1080,HAB=10808=131,BAE=1312=67.1故答案为67.1考
18、点:多边形的内角15、【解析】分析题意,如图所示,连接BF,由翻折变换可知,BFAE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.AEF是由ABE沿AE折叠得到的,BFAE,BE=EF.BC=6,点E为BC的中点,BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF
19、代入数据求得CF= 故答案为【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质16、21【解析】每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为411111111.11115=2111元,即可得至少应该收取保险费每人 =21元17、【解析】试题分析:上方的正六边形涂红色的概率是,故答案为考点:概率公式18、6【解析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2), 外角和=360所以,由题意可得180(n-2)=2360解得:n=6三、解答题:(本大题共9个
20、小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1);(2)【解析】1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案【详解】解:(1)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,恰好选到丙的概率是: ;(2)画树状图得:共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,恰好选中甲、乙两人的概率为: 【点睛】此题考查的是用列表法或树状图法求概率注意
21、树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比20、证明见解析.【解析】(1)根据旋转的性质可得DB=CB,ABD=EBC,ABE=60,然后根据垂直可得出DBE=CBE=30,继而可根据SAS证明BDEBCE;(2)根据(1)以及旋转的性质可得,BDEBCEBDA,继而得出四条棱相等,证得四边形ABED为菱形【详解】(1)证明:BAD是由BEC在平面内绕点B旋转60而得,DB=CB,ABD=EBC,ABE=60,ABEC,ABC=90,DBE=CBE=30,在BDE和BCE中,BDEBC
22、E;(2)四边形ABED为菱形;由(1)得BDEBCE,BAD是由BEC旋转而得,BADBEC,BA=BE,AD=EC=ED,又BE=CE,BA=BE=ED= AD四边形ABED为菱形考点:旋转的性质;全等三角形的判定与性质;菱形的判定21、(1)甲、乙两队合作完成这项工程需要36天;(2)甲、乙两队至多要合作7天【解析】(1)设甲、乙两队合作完成这项工程需要x天,根据条件:甲队先做5天,再由甲、乙合作9天,共完成总工作量的,列方程求解即可;(2)设甲、乙两队最多合作元天,先求出甲、乙两队合作一天完成工程的多少,再根据完成此项工程的工程款不超过190万元,列出不等式,求解即可得出答案【详解】(
23、1)设甲、乙两队合作完成这项工程需要x天根据题意得,解得 x=36,经检验x=36是分式方程的解,答:甲、乙两队合作完成这项工程需要36天,(2)设甲、乙需要合作y天,根据题意得,解得y7答:甲、乙两队至多要合作7天【点睛】本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验22、(1)10、0.28、1;(2)见解析;(3)6.4本;(4)264名;【解析】(1)根据百分比=计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【详解】(1)a=500.
24、2=10、b=1450=0.28、c=5050=1;(2)补全图形如下:(3)所有被调查学生课外阅读的平均本数=6.4(本)(4)该校八年级共有600名学生,该校八年级学生课外阅读7本和8本的总人数有600=264(名)【点睛】本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型23、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:购买篮球8个,排球12个;购买篮球9,排球11个;购买篮球2个,排球2个;方案最省钱【解析】试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排
25、球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:解得答:篮球每个50元,排球每个30元(2)设购买篮球m个,则购买排球(20-m)个,依题意,得:50m+30(20-m)1解得:m2又m8,8m2篮球的个数必须为整数,只能取8、9、2满足题意的方案有三种:购买篮球8个,排球12个,费用为760元;购买篮球9,排球11个,费用为780元;购买篮球2个,排球2个,费用为1元以上三个方案中,方案最省钱点睛:本题主要考
26、查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键24、(1),;,;(2)【解析】(1)根据平行点的定义即可判断;分两种情形:如图1,当点B在原点上方时,作OHAB于点H,可知OH=1.如图2,当点B在原点下方时,同法可求;(2)如图,直线OE的解析式为,设直线BC/OE交x轴于C,作CDOE于D. 设A与直线BC相切于点F,想办法求出点A的坐标,再根据对称性求出左侧点A的坐标即可解决问题;【详解】解:(1)因为P2、P3到直线yx的距离为1,所以根据平行点的定义可知,直线m的平行点是,故答案为,解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距
27、离为1的直线设该直线与x轴交于点A,与y轴交于点B如图1,当点B在原点上方时,作OHAB于点H,可知OH1由直线m的表达式为yx,可知OABOBA45所以直线AB与O的交点即为满足条件的点Q连接,作轴于点N,可知在中,可求所以在中,可求所以所以点的坐标为同理可求点的坐标为如图2,当点B在原点下方时,可求点的坐标为点的坐标为,综上所述,点Q的坐标为,(2)如图,直线OE的解析式为,设直线BCOE交x轴于C,作CDOE于D当CD1时,在RtCOD中,COD60,设A与直线BC相切于点F,在RtACE中,同法可得,根据对称性可知,当A在y轴左侧时,观察图象可知满足条件的N的值为:【点睛】此题考查一次
28、函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题25、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)n 【解析】(1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)将点N的坐标代入y=x2,看是否符合解析式即可;(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y3,当x=3时y2,据此列出关于n的不等式组,解之可
29、得【详解】(1)A(2,2),B(3,2),D(2,3),ADBC1, 则点 C(3,3),故答案为:(3,3);(2)把(0,0)(n,0)代入 yx2+bx+c 得: ,解得:,抛物线解析式为 yx2+nx(x)2+,顶点 N 坐标为(,);(3)由(2)把 x代入 yx2()2 ,抛物线的顶点在函数 yx2的图象上运动;(4)根据题意,得:当 x2 时 y3,当 x3 时 y2, 即,解得:n【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力26、(1)详见解析;(2);【解析】(1)连接OC,根据垂直的定义得到
30、AOF=90,根据三角形的内角和得到ACE=90+A,根据等腰三角形的性质得到OCE=90,得到OCCE,于是得到结论;(2)根据圆周角定理得到ACB=90,推出ACO=BCE,得到BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论【详解】:(1)连接OC,OFAB,AOF=90,A+AFO+90=180,ACE+AFO=180,ACE=90+A,OA=OC,A=ACO,ACE=90+ACO=ACO+OCE,OCE=90,OCCE,EM是O的切线;(2)AB是O的直径,ACB=90,ACO+BCO=BCE+BCO=90,ACO=BCE,A=E,A=ACO=BCE=E,ABC=BCO+E=2A,A=30,BOC=60,BOC是等边三角形,OB=BC=,阴影部分的面积=,【点睛】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键27、(7010)m【解析】过点D作DFAB于点F,过点C作CHDF于点H.通过解得到DF的长度;通过解得到CE的长度,则【详解】如图,过点D作DFAB于点F,过点C作CHDF于点H.则DE=BF=CH=10m,在中,AF=80m10m=70m, DF=AF=70m.在中,DE=10m, 答:障碍物B,C两点间的距离为