《2023届四川省攀枝花市名校中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川省攀枝花市名校中考考前最后一卷数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在ABC中,ACB90,CDAB于点D,则图中相似三角形共有()A1对B2对C3对D4对2上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,
2、于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()ABCD3如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是()A美B丽C泗D阳4某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A18分,17分 B20分,17分 C20分,19分 D20分,20分5在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )ABCD6如图,四
3、边形ABCD内接于O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC若ABC=105,BAC=25,则E的度数为( )A45B50C55D607如图所示,在方格纸上建立的平面直角坐标系中,将ABC绕点O按顺时针方向旋转90,得到ABO,则点A的坐标为( )A(3 ,1)B(3 ,2)C(2 ,3)D(1 ,3)8如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )ABCD9计算的结果为()ABCD10下面运算结果为的是ABCD11一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )A第一象限B第二象限C第三象限D第四象限12如图是由7个
4、同样大小的正方体摆成的几何体将正方体移走后,所得几何体()A主视图不变,左视图不变B左视图改变,俯视图改变C主视图改变,俯视图改变D俯视图不变,左视图改变二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是_14不等式5x33x+5的非负整数解是_15如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B;依此类推,则平行四边形AO4C5B的面积为_
5、16如图,AB是O的直径,AB=2,点C在O上,CAB=30,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为_ 17如图1,在平面直角坐标系中,将ABCD放置在第一象限,且ABx轴,直线yx从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为_18将一副直角三角板如图放置,使含30角的三角板的直角边和含45角的三角板一条直角边在同一条直线上,则1的度数为_ 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)(操作发现)(1)如图1,ABC为等边三角形,先将三角
6、板中的60角与ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0且小于30),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使DCE=30,连接AF,EF求EAF的度数;DE与EF相等吗?请说明理由;(类比探究)(2)如图2,ABC为等腰直角三角形,ACB=90,先将三角板的90角与ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0且小于45),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使DCE=45,连接AF,EF请直接写出探究结果:EAF的度数;线段AE,ED,DB之间
7、的数量关系20(6分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3)(1)求抛物线的解析式;(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由 21(6分)已知如图,直线y= x+4 与x轴相交于点A,与直线y= x相交于点P(1)求点P的坐标;(2)动点E从原点O出发,沿着OPA的路线向点A匀速运动(E不与点O、A重合),过点E分别作EFx轴于F,EBy轴于B设运动t秒时,
8、F的坐标为(a,0),矩形EBOF与OPA重叠部分的面积为S直接写出: S与a之间的函数关系式(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。22(8分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:成绩x分人数频率25x3040.0830x3580.1635x40a0.3240x45bc45x50100.2(1)求此次抽查了多少名学生的成绩;(2)通
9、过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数23(8分)如图,已知,请用尺规过点作一条直线,使其将分成面积比为两部分(保留作图痕迹,不写作法)24(10分)如图,在平行四边形ABCD中,过点A作AEBC,垂足为E,连接DE,F为线段DE上一点,且AFE=B求证:ADFDEC;若AB=8,AD=6,AF=4,求AE的长25(10分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数
10、),每天的销售利润为y元求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?26(12分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率27(12分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC的三个顶点的坐标分别为A(1,3),B(4,0),C(0,0)(1)画出
11、将ABC向上平移1个单位长度,再向右平移5个单位长度后得到的A1B1C1;(2)画出将ABC绕原点O顺时针方向旋转90得到A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】ACB=90,CDAB,ABCACD,ACDCBD,ABCCBD,所以有三对相似三角形故选C2、B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案详解:根据题意得,函数图象是距离先变短,再变长,在教室内没
12、变化,最后迅速变短,B符合题意;故选B点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键3、D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;故本题答案为:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形是解题的关键4、D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数详解:将数据重新排列为17、18、1
13、8、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D点睛:本题考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数5、A【解析】试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,从上面看得到的平面图形是圆的是圆柱或
14、圆锥,符合条件的有A、B,综上所知这个几何体是圆柱故选A考点:由三视图判断几何体6、B【解析】先根据圆内接四边形的性质求出ADC的度数,再由圆周角定理得出DCE的度数,根据三角形外角的性质即可得出结论【详解】四边形ABCD内接于O,ABC=105,ADC=180ABC=180105=75,BAC=25,DCE=BAC=25,E=ADCDCE=7525=50【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.7、D【解析】解决本题抓住旋转的三要素:旋转
15、中心O,旋转方向顺时针,旋转角度90,通过画图得A【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90,画图,从而得A点坐标为(1,3)故选D8、A【解析】试题解析:一个斜坡长130m,坡顶离水平地面的距离为50m,这个斜坡的水平距离为:=10m,这个斜坡的坡度为:50:10=5:1故选A点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式9、A【解析】根据分式的运算法则即可【详解】解:原式=,故选A.【点睛】本题主要
16、考查分式的运算。10、B【解析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断【详解】. ,此选项不符合题意;.,此选项符合题意;.,此选项不符合题意;.,此选项不符合题意;故选:【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方11、C【解析】y随x的增大而减小,可得一次函数y=kx+b单调递减,k0,又满足kb0,由此即可得出答案【详解】y随x的增大而减小,一次函数y=kx+b单调递减,k0,kb0,直线经过第二、一、四象限,不经过第三象限,故选C【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=k
17、x+b(k0,k、b是常数)的图象和性质是解题的关键.12、A【解析】分别得到将正方体移走前后的三视图,依此即可作出判断【详解】将正方体移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。将正方体移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。将正方体移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。故选A.【点睛】考查了三视图,从几何体的正面,左
18、面,上面看到的平面图形中正方形的列数以及每列正方形的个数是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】解:过点C作CP直线AB于点P,过点P作C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示当x=0时,y=3,点B的坐标为(0,3);当y=0时,x=4,点A的坐标为(4,0),OA=4,OB=3,AB=5,sinB=C(0,1),BC=3(1)=4,CP=BCsinB=PQ为C的切线,在RtCQP中,CQ=1,CQP=90,PQ=故答案为14、0,1,2,1【解析】5x11x+5,移项得,5x1x5+1,合并同类项得,2x8,系数化为1得,x4所
19、以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键 15、【解析】试题分析:根据矩形的性质求出AOB的面积等于矩形ABCD的面积的,求出AOB的面积,再分别求出、的面积,即可得出答案四边形ABCD是矩形,AO=CO,BO=DO,DCAB,DC=AB,考点:矩形的性质;平行四边形的性质点评:本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等16、【解析】作出D关于AB的对称点D,则PC+PD的最小值就是CD的长度,在COD中根据边角关系即可
20、求解.【详解】解:如图:作出D关于AB的对称点D,连接OC,OD,CD.又点C在O上,CAB=30,D为弧BC的中点,即,BAD=CAB=15.CAD=45.COD=90.则COD是等腰直角三角形.OC=OD=AB=1,故答案为:.【点睛】本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.17、1【解析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则DE=2 ,作DFAB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求
21、解【详解】解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,则AB144,当直线经过点D,设其交AB于点E,则DE2 ,作DFAB于点F,yx于x轴负方向成45角,且ABx轴,DEF45,DFEF,在直角三角形DFE中,DF2+EF2DE2,2DF21DF2,那么ABCD面积为:ABDF421,故答案为1【点睛】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线18、75【解析】先根据同旁内角互补,两直线平行得出ACDF,再根据两直线平行内错角相等得出2=A=45,然后根据三角形内角与外角的关系可得1的度数
22、【详解】ACB=DFE=90,ACB+DFE=180,ACDF,2=A=45,1=2+D=45+30=75故答案为:75【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出2=A=45是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)110DE=EF;(1)90AE1+DB1=DE1 【解析】试题分析:(1)由等边三角形的性质得出AC=BC,BAC=B=60,求出ACF=BCD,证明ACFBCD,得出CAF=B=60,求出EAF=BAC+CAF=110;证出DCE=FCE,由SAS证明DCEFCE,得出DE=EF即可;(1)由等腰直
23、角三角形的性质得出AC=BC,BAC=B=45,证出ACF=BCD,由SAS证明ACFBCD,得出CAF=B=45,AF=DB,求出EAF=BAC+CAF=90;证出DCE=FCE,由SAS证明DCEFCE,得出DE=EF;在RtAEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论试题解析:解:(1)ABC是等边三角形,AC=BC,BAC=B=60DCF=60,ACF=BCD在ACF和BCD中,AC=BC,ACF=BCD,CF=CD,ACFBCD(SAS),CAF=B=60,EAF=BAC+CAF=110;DE=EF理由如下:DCF=60,DCE=30,FCE=6030=30,DCE=
24、FCE在DCE和FCE中,CD=CF,DCE=FCE,CE=CE,DCEFCE(SAS),DE=EF;(1)ABC是等腰直角三角形,ACB=90,AC=BC,BAC=B=45DCF=90,ACF=BCD在ACF和BCD中,AC=BC,ACF=BCD,CF=CD,ACFBCD(SAS),CAF=B=45,AF=DB,EAF=BAC+CAF=90;AE1+DB1=DE1,理由如下:DCF=90,DCE=45,FCE=9045=45,DCE=FCE在DCE和FCE中,CD=CF,DCE=FCE,CE=CE,DCEFCE(SAS),DE=EF在RtAEF中,AE1+AF1=EF1,又AF=DB,AE1
25、+DB1=DE120、(1);(2);(3)P1(3,-3),P2(,3),P3(,3)【解析】(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;(2)根据的坐标,易求得直线的解析式由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;(3)本题应分情况讨论:过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标【详解
26、】解:(1)把代入,可以求得 (2)过点作轴分别交线段和轴于点,在中,令,得 设直线的解析式为 可求得直线的解析式为: S四边形ABCD 设 当时,有最大值 此时四边形ABCD面积有最大值 (3)如图所示,如图:过点C作CP1x轴交抛物线于点P1,过点P1作P1E1BC交x轴于点E1,此时四边形BP1CE1为平行四边形,C(0,-3)设P1(x,-3)x2-x-3=-3,解得x1=0,x2=3,P1(3,-3);平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,C(0,-3)设P(x,3),x2-x-3=3,x2-3x-8=0解得x=或x=,此时存
27、在点P2(,3)和P3(,3),综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3)【点睛】此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大21、(1); (2);(3)【解析】(1)联立两直线解析式,求出交点P坐标即可;(2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函数关系式.(3)根据(1)
28、所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.【详解】解:(1)联立得:,解得:;P的坐标为;(2)分两种情况考虑:当时,由F坐标为(a,0),得到OF=a,把E横坐标为a,代入得:即此时 当时,重合的面积就是梯形面积,F点的横坐标为a,所以E点纵坐标为 M点横坐标为:-3a+12, 所以;(3)令中的y=0,解得:x=4,则A的坐标为(4,0)则AP= ,则PM=2又OP= 点P向左平移3个单位在向下平移可以得到M1点P向右平移3个单位在向上平移可以得到M2A向左平移3个单位在向下平移可以得到 Q1(1,-)A向
29、右平移3个单位在向上平移可以得到 Q1(7,)所以,存在Q点,且坐标是【点睛】本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题22、(1)50;(2)详见解析;(3)220.【解析】(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【详解】解:(1)40.08=50(名)答:此次
30、抽查了50名学生的成绩;(2)a=500.32=16(名),b=50481610=12(名),c=10.080.160.320.2=0.24,如图所示:(3)500(0.24+0.2)=5000.44=220(名)答:本次测试九年级学生中成绩优秀的人数是220名【点睛】本题主要考查数据的收集、 处理以及统计图表。23、详见解析【解析】先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.【详解】如图作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AEAD,ADBD,故
31、AEAB,而BEAB,而AEC与CEB在AB边上的高相同,所以CEB的面积是AEC的面积的3倍,即SAECSCEB13.【点睛】本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案.24、(1)见解析(2)6【解析】(1)利用对应两角相等,证明两个三角形相似ADFDEC.(2)利用ADFDEC,可以求出线段DE的长度;然后在在RtADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:四边形ABCD是平行四边形,ABCD,ADBCC+B=110,ADF=DECAFD+AFE=110,AFE=B,AFD=C在ADF与DEC中,AFD=C,ADF=
32、DEC,ADFDEC(2)四边形ABCD是平行四边形,CD=AB=1由(1)知ADFDEC,在RtADE中,由勾股定理得:25、(1)y=5x2+110x+1200;(2) 售价定为189元,利润最大1805元【解析】利润等于(售价成本)销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y(200x170)(40+5x)5x2+110x+1200;(2)y5x2+110x+12005(x11)2+1805,抛物线开口向下,当x11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的
33、表达式是解题的关键26、(1)不可能事件;(2).【解析】试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为考点:列表法与树状图法27、(1)作图见解析;(2)作图见解析;(3)P(,0)【解析】(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求【详解】解:(1)如图所示,A1B1C1为所求做的三角形;(2)如图所示,A2B2O为所求做的三角形;(3)A2坐标为(3,1),A3坐标为(4,4),A2A3所在直线的解析式为:y=5x+16,令y=0,则x=,P点的坐标(,0)考点:平移变换;旋转变换;轴对称-最短路线问题