《2023届四川省成都市都江堰市中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川省成都市都江堰市中考考前最后一卷数学试卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为()ABCD2如图,四边形ABCD是菱形,AC=8,DB=6,DHAB于H,则DH=( )ABC12D243图中三视图对应的正三棱柱是()ABCD4将抛
2、物线y(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A向下平移3个单位B向上平移3个单位C向左平移4个单位D向右平移4个单位5已知a-2b=-2,则4-2a+4b的值是()A0B2C4D86如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A7B8C9D107某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有() A180人 B117人 C215人 D257人8如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则ACE的周长为( )A2+B2+2C4D39若不等
3、式组的整数解共有三个,则a的取值范围是()A5a6B5a6C5a6D5a610如图,四边形ABCD内接于O,若四边形ABCO是平行四边形,则ADC的大小为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11已知O1、O2的半径分别为2和5,圆心距为d,若O1与O2相交,那么d的取值范围是_12某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63,则筒仓CD的高约为_m(精确到0.1m,sin630.89,cos630.45,tan631.96)13小明把一副含4
4、5,30的直角三角板如图摆放,其中CF90,A45,D30,则+等于_14等腰三角形一边长为8,另一边长为5,则此三角形的周长为_15一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为_16如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留)为_.三、解答题(共8题,共72分)17(8分)如图,在平行四边形ABCD中,DBAB,点E是BC边的中点,过点E作EFCD,垂足为F,交AB的延长线于点G(1)求证:四边形BDFG是矩形;(2)若AE平分BAD,求tanBAE的值18(8分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一
5、个机翼,请你根据图中的数据帮小明计算出CD的长度(结果保留根号)19(8分)某商店准备购进甲、乙两种商品已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价进价)20(8分)如图,AB为O的直径,CD与O相切于点E,交AB的延长线于点D,连接BE,过点O作OCBE,交O于点F,交切线于点C,连接AC.(1)求证:
6、AC是O的切线;(2)连接EF,当D= 时,四边形FOBE是菱形.21(8分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨千米)甲库乙库甲库乙库A库20151212B库2520108若从甲库运往A库粮食x吨,(1)填空(用含x的代数式表示):从甲库运往B库粮食 吨;从乙库运往A库粮食 吨;从乙库运往B库粮食 吨;(2)
7、写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?22(10分)在矩形中,点在上,,垂足为.求证.若,且,求.23(12分)先化简,再求代数式()的值,其中a=2sin45+tan4524先化简,再求值:,其中,.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率【详解】解:设袋子中黄球有x个,根据题意,得:,解得:x=3,即袋中黄球有3个,所以随机摸出一个黄球的概率为
8、,故选A【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比得到所求的情况数是解决本题的关键2、A【解析】解:如图,设对角线相交于点O,AC=8,DB=6,AO=AC=8=4,BO=BD=6=3,由勾股定理的,AB=5,DHAB,S菱形ABCD=ABDH=ACBD,即5DH=86,解得DH=故选A【点睛】本题考查菱形的性质3、A【解析】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解【详解】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确故选A【点睛】本题考查由三视图判断几何体,掌握
9、几何体的三视图是本题的解题关键4、A【解析】将抛物线平移,使平移后所得抛物线经过原点,若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,故选A.5、D【解析】a-2b=-2,-a+2b=2,-2a+4b=4,4-2a+4b=4+4=8,故选D.6、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】根据三视图知,该几何体中小正方体的分布情况如下图所示:所
10、以组成这个几何体的小正方体个数最多为9个,故选C【点睛】考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.7、B【解析】设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.【详解】设男生为x人,则女生有65%x人,由题意得,x+65%x=297,解之得x=180,297-180=117人.故选B.【点睛】本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.8、B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.详解:DE垂直平分AB,BE=AE,AE+CE=BC=2,ACE的周长=AC+
11、AE+CE=AC+BC=2+2,故选B点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等9、C【解析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围【详解】解不等式组得:2xa,不等式组的整数解共有3个,这3个是3,4,5,因而5a1故选C【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了10、C【解析】根据平行四
12、边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知B=AOC,根据圆内接四边形的对角互补可知B+D=180,根据圆周角定理可知D=AOC,因此B+D=AOC+AOC=180,解得AOC=120,因此ADC=60故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用二、填空题(本大题共6个小题,每小题3分,共18分)11、3d7【解析】若两圆的半径分别为R和r,且Rr,圆心距为d:相交,则R-rdR+r,从而得到圆心距O1O2的取值范围【详解】O1和O2的半径分别为2和5,且两圆的位置关系为相交,圆心距O1O2的取值范围为5-2d2+5,即3d7.故答案
13、为:3d7.【点睛】本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.12、40.0【解析】首先过点A作AEBD,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后RtACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.【详解】过点A作AEBD,交CD于点E,ABBD,CDBD,BAEABDBDE90,四边形ABDE是矩形,AEBD20m,DEAB0.8m,在RtACE中,CAE63,CEAEtan63201.9639.2(m),CDCEDE39.20.840.0(m)答:筒仓CD的高约40.0m,故答案为:4
14、0.0【点睛】此题考查解直角三角形的应用仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用13、210【解析】根据三角形内角和定理得到B45,E60,根据三角形的外角的性质计算即可【详解】解:如图:CF90,A45,D30,B45,E60,2+3120,+A+1+4+BA+B+2+390+120210,故答案为:210【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键14、18或21【解析】当腰为8时,周长为8+8+5=21;当腰为5时,周长为5+5+8=18.故此三角形的周长为18或
15、21.15、【解析】首先求出一次函数y=kx+3与y轴的交点坐标;由于函数与x轴的交点的纵坐标是0,可以设横坐标是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函数的解析式y=kx+3,从而求出k的值【详解】在y=kx+3中令x=0,得y=3,则函数与y轴的交点坐标是:(0,3);设函数与x轴的交点坐标是(a,0),根据勾股定理得到a2+32=25,解得a=4;当a=4时,把(4,0)代入y=kx+3,得k=;当a=-4时,把(-4,0)代入y=kx+3,得k=;故k的值为或【点睛】考点:本体考查的是根据待定系数法求一次函数解析式解决本题的关键是求出函数与y轴的交点坐标,然后根据勾股定
16、理求得函数与x轴的交点坐标,进而求出k的值16、250【解析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱由三视图可得圆柱的半径和高,易求体积【详解】该立体图形为圆柱,圆柱的底面半径r=5,高h=10,圆柱的体积V=r2h=5210=250(立方单位)答:立体图形的体积为250立方单位故答案为250.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积高三、解答题(共8题,共72分)17、(1)见解析;(2)【解析】(1)根据矩形的判定证明即可;(2)根据平行四边形的性质和等边三角形的性质解答即可【详解】
17、证明:(1)BDAB,EFCD,ABD90,EFD90,根据题意,在ABCD中,ABCD,BDCABD90,BDGF,四边形BDFG为平行四边形,BDC90,四边形BDFG为矩形;(2)AE平分BAD,BAEDAE,ADBC,BEADAE,BAEBEA,BABE,在RtBCD中,点E为BC边的中点,BEEDEC,在ABCD中,ABCD,ECD为等边三角形,C60,【点睛】本题考查了矩形的判定、等边三角形的判定和性质,根据平行四边形的性质和等边三角形的性质解答是解题关键18、CD的长度为1717cm【解析】在直角三角形中用三角函数求出FD,BE的长,而FCAEABBE,而CDFCFD,从而得到答
18、案.【详解】解:由题意,在RtBEC中,E=90,EBC=60,BCE=30,tan30=,BE=ECtan30=51=17(cm);CF=AE=34+BE=(34+17)cm,在RtAFD中,FAD=45,FDA=45,DF=AF=EC=51cm,则CD=FCFD=34+1751=1717,答:CD的长度为1717cm【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.19、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元【解析】(1)设购进甲、乙两种商
19、品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润【详解】(1)设购进甲种商品x件,购进乙商品y件,
20、根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a件,则购进乙种商品(100a)件,根据题意列得:,解得:20a22,总利润W=5a+10(100a)=5a+1000,W是关于a的一次函数,W随a的增大而减小,当a=20时,W有最大值,此时W=900,且10020=80,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元【点睛】此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键20、(1)详见解析;(2)30.【解析】(1)利用切线的性质得CEO=90,
21、再证明OCAOCE得到CAO=CEO=90,然后根据切线的判定定理得到结论;(2)利用四边形FOBE是菱形得到OF=OB=BF=EF,则可判定OBE为等边三角形,所以BOE=60,然后利用互余可确定D的度数【详解】(1)证明:CD与O相切于点E,OECD,CEO=90,又OCBE,COE=OEB,OBE=COAOE=OB,OEB=OBE,COE=COA,又OC=OC,OA=OE,OCAOCE(SAS),CAO=CEO=90,又AB为O的直径,AC为O的切线;(2)四边形FOBE是菱形,OF=OB=BF=EF,OE=OB=BE,OBE为等边三角形,BOE=60,而OECD,D=30【点睛】本题考
22、查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”也考查了圆周角定理21、(1)(100x);(1x);(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元【解析】分析:()根据题意解答即可; ()弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”详解:()设从甲库运往A库粮食x吨; 从甲库运往B库粮食(
23、100x)吨; 从乙库运往A库粮食(1x)吨; 从乙库运往B库粮食(20+x)吨; 故答案为(100x);(1x);(20+x) ()依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100x)吨,乙库运往A库(1x)吨,乙库运到B库(20+x)吨 则,解得:0x1 从甲库运往A库粮食x吨时,总运费为: y=1220x+1025(100x)+1215(1x)+820120(100x) =30x+39000; 从乙库运往A库粮食(1x)吨,0x1,此时100x0,y=30x+39000(0x1) 300,y随x的增大而减小,当x=1时,y取最小值,最小值是2答:从甲库运往A库1吨粮食,从甲库运往
24、B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”22、(1)证明见解析;(2)1【解析】分析:(1)利用“AAS”证ADFEAB即可得;(2)由ADF+FDC=90、DAF+ADF=90得FDC=DAF=30,据此知AD=2DF,根据DF=AB可得答案详解:(1)证明:在矩形ABCD中,ADBC,AEB=DAF,又DFAE,DFA=90,DFA=B,又AD=EA,ADFEAB,DF=AB(2)ADF+FDC=90,DAF+ADF=90,FDC=DAF=30,AD=2DF,DF=AB,AD=2AB=1点睛:本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质23、,【解析】先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可【详解】解:原式 当时原式【点睛】考查分式的混合运算,掌握运算顺序是解题的关键24、1【解析】分析:先把小括号内的通分,按照分式的减法和分式的除法法则进行化简,再把字母的值代入运算即可.详解:原式 当x=-1、y=2时,原式=-(-1)2+222=-1+8=1点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则