《2022-2023学年四川省攀枝花市属高中高三最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省攀枝花市属高中高三最后一卷数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()ABCD2函数的图象大致为( )ABCD3已知函数的图像上有且仅有四个不同的点关于直线的对
2、称点在的图像上,则实数的取值范围是( )ABCD4已知平面向量,则实数x的值等于( )A6B1CD5世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是( )ABCD6执行如图所示的程序框图,若输入,则输出的( )A4B5C6D77设命题p:1,n22n,则p为( )ABCD8已知集合,若,则实数的取值范围为( )ABCD9国务院发布关于进一步调整优化结构、提高教育经费使用效益的意见中提出,要优先落实教育投入某研究机构统计了年至年国家财政性教
3、育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B年以来,国家财政性教育经费的支出占比例持续年保持在以上C从年至年,中国的总值最少增加万亿D从年到年,国家财政性教育经费的支出增长最多的年份是年10已知不重合的平面 和直线 ,则“ ”的充分不必要条件是( )A内有无数条直线与平行B 且C 且D内的任何直线都与平行11已知复数z满足iz2+i,则z的共轭复数是()A12iB1+2iC12iD1+2i12如图,在等腰梯形中,为的中点,将与分别沿、向上折起,使、重合为点,则三棱锥的外接球的体积是( )
4、ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数为偶函数,则_.14已知抛物线的焦点和椭圆的右焦点重合,直线过抛物线的焦点与抛物线交于、两点和椭圆交于、两点,为抛物线准线上一动点,满足,当面积最大时,直线的方程为_.15已知角的终边过点,则_.16已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,动点满足直线与直线的斜率之积为,设点的轨迹为曲线.(1)求曲线的方程;(2)若过点的直线与曲线交于,两点,过点且与直线垂直的直线与相交于点,求的最小值及此
5、时直线的方程.18(12分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.(1)求抛物线的方程;(2)若,直线与交于点,求直线的斜率.19(12分)据人民网报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷地区造林总面积造林方式人工造林飞播造林新封山育林退化林修复人工更新内蒙6184843110527409413600690382695
6、0河北5833613456253333313507656533643河南14900297647134292241715376133重庆2263331006006240063333陕西297642184108336026386516067甘肃325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629宁夏91531589602293882981335北京1906410012400039991053(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区
7、中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率;(3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.20(12分)已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切(1)求椭圆的标准方程;(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值21(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.22(10分)在中,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60,连接,如图:(1)证明:平面平
8、面(2)求平面与平面所成二面角的大小.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.【详解】如图所示:由对称性可得:为的中点,且,所以,因为,所以,故而由几何性质可得,即,故渐近线方程为,故选B.【点睛】本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.2、A【解析】确定函数在定义域内的单调性,计算时的函数值可排除三个选项【详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,排除C,只有A可满足故
9、选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项3、A【解析】可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【详解】可求得直线关于直线的对称直线为,当时,当时,则当时,单减,当时,单增;当时,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【点睛】本题考查数形结合思想求解函数交点问题,导数
10、研究函数增减性,找准临界是解题的关键,属于中档题4、A【解析】根据向量平行的坐标表示即可求解.【详解】,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.5、C【解析】列出循环的每一步,可得出输出的的值.【详解】,输入,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数不成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,成立,跳出循环,输出的值为.故选:C.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.6、C【解析】根据程序框图程序运算即可得.【详解
11、】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.7、C【解析】根据命题的否定,可以写出:,所以选C.8、A【解析】解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.9、C【解析】观察图表,判断四个选项是否正确【详解】由表易知、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约增加万亿,故C项错误【点
12、睛】本题考查统计图表,正确认识图表是解题基础10、B【解析】根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】A. 内有无数条直线与平行,则相交或,排除;B. 且,故,当,不能得到 且,满足;C. 且,则相交或,排除;D. 内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.故选:.【点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.11、D【解析】两边同乘-i,化简即可得出答案【详解】iz2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【点睛】的共轭复数为12、A【解析】由题意等腰
13、梯形中的三个三角形都是等边三角形,折叠成的三棱锥是正四面体,易求得其外接球半径,得球体积【详解】由题意等腰梯形中,又,是靠边三角形,从而可得,折叠后三棱锥是棱长为1的正四面体,设是的中心,则平面,外接球球心必在高上,设外接球半径为,即,解得,球体积为故选:A【点睛】本题考查求球的体积,解题关键是由已知条件确定折叠成的三棱锥是正四面体二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据偶函数的定义列方程,化简求得的值.【详解】由于为偶函数,所以,即,即,即,即,即,即,即,所以.故答案为:【点睛】本小题主要考查根据函数的奇偶性求参数,考查运算求解能力,属于中档题.14、【解析】根据
14、均值不等式得到,根据等号成立条件得到直线的倾斜角为,计算得到直线方程.【详解】由椭圆,可知,(当且仅当,等号成立),直线的倾斜角为,直线的方程为.故答案为:.【点睛】本题考查了抛物线,椭圆,直线的综合应用,意在考查学生的计算能力和综合应用能力.15、【解析】由题意利用任意角的三角函数的定义,两角和差正弦公式,求得的值【详解】解:角的终边过点,故答案为:【点睛】本题主要考查任意角的三角函数的定义,两角和差正弦公式,属于基础题16、【解析】作出图象,求出方程的根,分类讨论的正负,数形结合即可.【详解】当时,令,解得,所以当时,则单调递增,当时,则单调递减,当时,单调递减,且,作出函数的图象如图:(
15、1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,此时各有1解,故当时,方程整理得,有1解同时有2解,即需,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意综上:的范围是,故答案为:,【点睛】本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)的最小值
16、为1,此时直线:【解析】(1)用直接法求轨迹方程,即设动点为,把已知用坐标表示并整理即得注意取值范围;(2)设:,将其与曲线的方程联立,消元并整理得,设,则可得,由求出,将直线方程与联立,得,求得,计算,设.显然,构造,由导数的知识求得其最小值,同时可得直线的方程.【详解】(1)设,则,即整理得(2)设:,将其与曲线的方程联立,得即设,则,将直线:与联立,得设.显然构造在上恒成立所以在上单调递增所以,当且仅当,即时取“=”即的最小值为1,此时直线:.(注:1.如果按函数的性质求最值可以不扣分;2.若直线方程按斜率是否存在讨论,则可以根据步骤相应给分.)【点睛】本题考查求轨迹方程,考查直线与椭圆
17、相交中的最值直线与椭圆相交问题中常采用“设而不求”的思想方法,即设交点坐标为,设直线方程,直线方程与椭圆方程联立并消元,然后用韦达定理得(或),把这个代入其他条件变形计算化简得出结论,本题属于难题,对学生的逻辑推理、运算求解能力有一定的要求18、(1)(2)0【解析】(1)根据题意,设直线,与联立,得,再由弦长公式,求解.(2)设,根据直线的斜率为1,则,得到,再由,所以线段中点的纵坐标为,然后直线的方程与直线的方程 联立解得交点H的纵坐标,说明直线轴,直线的斜率为0.【详解】(1)依题意,则直线,联立得;设,则,解得,故抛物线的方程为.(2),因为直线的斜率为1,则,所以,因为,所以线段中点
18、的纵坐标为.直线的方程为,即 直线的方程为,即 联立解得即点的纵坐标为,即直线轴,故直线的斜率为0.如果直线的斜率不存在,结论也显然成立,综上所述,直线的斜率为0.【点睛】本题考查抛物线的方程、直线与抛物线的位置关系,还考查推理论证能力以及化归与转化思想,属于中档题.19、(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省;(2);(3)分布列见详解,数学期望为【解析】(1)通过数据的观察以及计算人工造林面积与造林总面积比值,可得结果.(2)通过数据的观察以及计算新封山育林面积与造林总面积比值,得出比值超过的地区个数,然后可得结果.(3)计算退化林修复面积
19、超过一万公顷的地区中选两个地区总数,退化林修复面积超过六万公顷的地区的个数为,列出所有取值并计算相应概率,然后可得结果.【详解】(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省.(2)记事件A:在这十个地区中,任选一个地区,该地区新封山育林面积占总面积的比值超过根据数据可知:青海地区人工造林面积占总面积比超过,则(3)退化林修复面积超过一万公顷有6个地区:内蒙、河北、河南、重庆、陕西、新疆,其中退化林修复面积超过六万公顷有3个地区:内蒙、河北、重庆,所以X的取值为0,1,2所以,随机变量X的分布列如下:【点睛】本题考查数据的处理以及离散型随机变量的分布列
20、与数学期望,审清题意,细心计算,属基础题.20、(1);(2)【解析】(1)根据椭圆的离心率为,得到,根据直线与圆的位置关系,得到原心到直线的距离等于半径,得到,从而求得,进而求得椭圆的方程;(2)分直线的斜率存在是否为0与不存在三种情况讨论,写出直线的方程,与椭圆方程联立,利用韦达定理,向量的数量积,结合已知条件求得结果.【详解】(1)由离心率为,可得,且以原点O为圆心,椭圆C的长半轴长为半径的圆的方程为,因与直线相切,则有,即,故而椭圆方程为(2)当直线l的斜率不存在时,由于;当直线l的斜率为0时,则;当直线l的斜率不为0时,设直线l的方程为,由及,得,有,综上所述:【点睛】该题考查直线与
21、圆锥曲线的综合问题,椭圆的标准方程,考查直线与椭圆的位置关系,求向量数量积,在解题的过程中,注意对直线方程的分类讨论,属于中档题目.21、(1)单调递增区间为,单调递减区间为;(2)【解析】(1),令,解不等式即可;(2),令得,即,且的最小值为,令,结合即可解决.【详解】(1),当时,递增,当时,递减.故的单调递增区间为,单调递减区间为.(2),设的根为,即有可得,当时,递减,当时,递增.,所以,当;当时,设,递增,所以.综上,.【点睛】本题考查了利用导数研究函数单调性以及函数恒成立问题,这里要强调一点,处理恒成立问题时,通常是构造函数,将问题转化为函数的极值或最值来处理.22、(1)证明见
22、解析(2)45【解析】(1)设的中点为,连接,设的中点为,连接,从而即为二面角的平面角,推导出,从而平面,则,即,进而平面,推导四边形为平行四边形,从而,平面,由此即可得证.(2)以B为原点,在平面中过B作BE的垂线为x轴,BE为y轴,BA为z轴建立空间直角坐标系,利用向量法求出平面与平面所成二面角的大小.【详解】(1)是的中点,.设的中点为,连接.设的中点为,连接,.易证:,即为二面角的平面角.,而为的中点.易知,为等边三角形,.,平面.而,平面,即.由,平面.分别为的中点.四边形为平行四边形.,平面,又平面.平面平面.(2)如图,建立空间直角坐标系,设.则,显然平面的法向量,设平面的法向量为,.,由图形观察可知,平面与平面所成的二面角的平面角为锐角.平面与平面所成的二面角大小为45.【点睛】本题主要考查立体几何中面面垂直的证明以及求解二面角大小,难度一般,通常可采用几何方法和向量方法两种进行求解.