2023届江苏省东台市第四联盟市级名校中考五模数学试题含解析.doc

上传人:茅**** 文档编号:87784332 上传时间:2023-04-17 格式:DOC 页数:19 大小:1,006KB
返回 下载 相关 举报
2023届江苏省东台市第四联盟市级名校中考五模数学试题含解析.doc_第1页
第1页 / 共19页
2023届江苏省东台市第四联盟市级名校中考五模数学试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2023届江苏省东台市第四联盟市级名校中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省东台市第四联盟市级名校中考五模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)01234人数(人)22311A3,2.5B1,2C3,3D2,22下列分式中,最简分式是( )ABCD3如图,

2、等边ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿BDE匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,AMN的面积为y,能大致刻画y与x的函数关系的图象是()ABCD4如图,已知ABCD中,E是边AD的中点,BE交对角线AC于点F,那么SAFE:S四边形FCDE为( )A1:3B1:4C1:5D1:65如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在O上,若过点M作O的一条切线MK,切点为K,则MK()A3B2C5D6我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这

3、个数字是A6.75103吨B67.5103吨C6.75104吨D6.75105吨7若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()ABCD8已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )ABCD9在实数,有理数有( )A1个B2个C3个D4个10如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若BOC=40,则D的度数为()A100B110C120D130二、填空题(共7小题,每小题3分,满分21分)11如图,利用图形面积的不同表示方

4、法,能够得到的代数恒等式是_(写出一个即可)12如图,BD是O的直径,CBD30,则A的度数为_13如图,AB、CD相交于点O,ADCB,请你补充一个条件,使得AODCOB,你补充的条件是_14如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_.15如图,AB为O的直径,弦CDAB于点E,已知CD6,EB1,则O的半径为_162018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_人17如图,点A、B、C、D在O上,O点在D的内部,四边形OABC为平行四边形,则OAD+OCD= .三、解答题(共7小题,满分69分)18(1

5、0分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图),图是平面图光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55,乙同学站在岩石B处测得叶片的最高位置D的仰角是45(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BGGH,CHAH,求塔杆CH的高(参考数据:tan551.4,tan350.7,sin550.8,sin350.6)19(5分)如图,已知抛物线yx24与x轴交于点A,B(点A

6、位于点B的左侧),C为顶点,直线yx+m经过点A,与y轴交于点D求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC平行于直线AD,求新抛物线对应的函数表达式20(8分)如图(1),P 为ABC 所在平面上一点,且APB=BPC=CPA=120,则点 P 叫做ABC 的费马点(1)如果点 P 为锐角ABC 的费马点,且ABC=60求证:ABPBCP;若 PA=3,PC=4,则 PB= (2)已知锐角ABC,分别以 AB、AC 为边向外作正ABE 和正ACD,CE 和 BD相交于 P 点如图(2)求CPD 的度数;求证

7、:P 点为ABC 的费马点21(10分)如图,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形(1)试探究线段AE与CG的关系,并说明理由(2)如图若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由当CDE为等腰三角形时,求CG的长22(10分)如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点求m的值及C点坐标;在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点

8、坐标;若不存在,请简要说明理由为抛物线上一点,它关于直线BC的对称点为Q当四边形PBQC为菱形时,求点P的坐标;点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由23(12分)计算: +()2|1|(+1)0.24(14分)如图,AB是O的直径,C、D为O上两点,且,过点O作OEAC于点EO的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:FB;(2)若AB12,BG10,求AF的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题解析:表中数据为从小到大排列数据1小时出现了三次最多为众数;1处在第5位为中位数所以本

9、题这组数据的中位数是1,众数是1故选D考点:1.众数;1.中位数.2、A【解析】试题分析:选项A为最简分式;选项B化简可得原式=;选项C化简可得原式=;选项D化简可得原式=,故答案选A.考点:最简分式.3、A【解析】根据题意,将运动过程分成两段分段讨论求出解析式即可【详解】BD=2,B=60,点D到AB距离为, 当0x2时,y=; 当2x4时,y=. 根据函数解析式,A符合条件.故选A【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式4、C【解析】根据AEBC,E为AD中点,找到AF与FC的比,则可知AEF面积与FCE面积的比,同时因为DEC

10、面积=AEC面积,则可知四边形FCDE面积与AEF面积之间的关系【详解】解:连接CE,AEBC,E为AD中点, FEC面积是AEF面积的2倍设AEF面积为x,则AEC面积为3x,E为AD中点,DEC面积=AEC面积=3x四边形FCDE面积为1x,所以SAFE:S四边形FCDE为1:1故选:C【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系5、B【解析】以OM为直径作圆交O于K,利用圆周角定理得到MKO90从而得到KMOK,进而利用勾股定理求解【详解】如图所示:MK.故选:B【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,

11、必连过切点的半径,构造定理图,得出垂直关系6、C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)67500一共5位,从而67 500=6.752故选C7、D【解析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错

12、误;D、,正确;故选D【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变此题比较简单,但计算时一定要细心8、D【解析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM上的点(P)重合,而选项C还原后两个点不能够重合故选D点评:本题考核立意相对较新,考核了学生的空间

13、想象能力9、D【解析】试题分析:根据有理数是有限小数或无限循环小数,可得答案:是有理数,故选D考点:有理数10、B【解析】根据同弧所对的圆周角是圆心角度数的一半即可解题.【详解】BOC=40,AOB=180,BOC+AOB=220,D=110(同弧所对的圆周角是圆心角度数的一半),故选B.【点睛】本题考查了圆周角和圆心角的关系,属于简单题,熟悉概念是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、(a+b)2=a2+2ab+b2【解析】完全平方公式的几何背景,即乘法公式的几何验证此类题型可从整体和部分两个方面分析问题本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部

14、分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.【详解】解:, 【点睛】此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.12、60【解析】解:BD是O的直径,BCD=90(直径所对的圆周角是直角),CBD=30,D=60(直角三角形的两个锐角互余),A=D=60(同弧所对的圆周角相等);故答案是:6013、AC或ADCABC【解析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可【详解】添加条件可以是:AC或ADCABC添加AC根据AAS

15、判定AODCOB,添加ADCABC根据AAS判定AODCOB,故填空答案:AC或ADCABC【点睛】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键14、2【解析】分析:由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,设高为h,则62h=16,解得:h=1它的表面积是:212+262+162=215、1【解析】解:连接OC,AB为O的直径,ABCD,CE=DE=CD=6=3,设O的半径为xcm,则OC=xcm,OE=OBB

16、E=x1,在RtOCE中,OC2=OE2+CE2,x2=32+(x1)2,解得:x=1,O的半径为1,故答案为1【点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键16、4.021【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:40.2万=4.021,故答案为:4.021【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以

17、及n的值17、1【解析】试题分析:四边形OABC为平行四边形,AOC=B,OAB=OCB,OAB+B=180四边形ABCD是圆的内接四边形,D+B=180又DAOC,3D=180,解得D=1OAB=OCB=180-B=1OAD+OCD=31-(D+B+OAB+OCB)=31-(1+120+1+1)=1故答案为1考点:平行四边形的性质;圆内接四边形的性质三、解答题(共7小题,满分69分)18、塔杆CH的高为42米【解析】作BEDH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtanCAH=tan55x知CE=CH-EH=tan55x-4,根据BE=DE可得关于x

18、的方程,解之可得【详解】解:如图,作BEDH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在RtACH中,CH=AHtanCAH=tan55x,CE=CHEH=tan55x4,DBE=45,BE=DE=CE+DC,即23+x=tan55x4+15,解得:x30,CH=tan55x=1.430=42,答:塔杆CH的高为42米【点睛】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形19、(1)1 ;(1) yx14x+1或yx1+6x+1【解析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(1)设新抛物线对应的函数表

19、达式为:yx1+bx+1,根据二次函数的性质求出点C的坐标,根据题意求出直线CC的解析式,代入计算即可【详解】解:(1)由x140得,x11,x11,点A位于点B的左侧,A(1,0),直线yx+m经过点A,1+m0,解得,m1,点D的坐标为(0,1),AD1;(1)设新抛物线对应的函数表达式为:yx1+bx+1,yx1+bx+1(x+)1+1,则点C的坐标为(,1),CC平行于直线AD,且经过C(0,4),直线CC的解析式为:yx4,14,解得,b14,b16,新抛物线对应的函数表达式为:yx14x+1或yx1+6x+1【点睛】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函

20、数的性质、抛物线与x轴的交点的求法是解题的关键20、(1)证明见解析;(2)60;证明见解析;【解析】试题分析:(1)根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;(2)根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到1=2,再由对顶角相等,得到5=6,即可求出所求角度数;由三角形ADF与三角形CPF相似,得到比例式,变形得到积的

21、恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到APF为60,由APD+DPC,求出APC为120,进而确定出APB与BPC都为120,即可得证试题解析:(1)证明:PAB+PBA=180APB=60,PBC+PBA=ABC=60,PAB=PBC,又APB=BPC=120,ABPBCP,解:ABPBCP,PB2=PAPC=12,PB=2;(2)解:ABE与ACD都为等边三角形,BAE=CAD=60,AE=AB,AC=AD,BAE+BAC=CAD+BAC,即EAC=BAD,在ACE和ABD中,ACEABD(SAS),1

22、=2,3=4,CPD=6=5=60;证明:ADFCFP,AFPF=DFCF,AFP=CFD,AFPCDFAPF=ACD=60,APC=CPD+APF=120,BPC=120,APB=360BPCAPC=120,P点为ABC的费马点考点:相似形综合题21、(1)AE=CG,AECG,理由见解析;(2)位置关系保持不变,数量关系变为;理由见解析;当CDE为等腰三角形时,CG的长为或或【解析】试题分析:证明即可得出结论.位置关系保持不变,数量关系变为证明根据相似的性质即可得出.分成三种情况讨论即可.试题解析:(1) 理由是:如图1,四边形EFGD是正方形, 四边形ABCD是正方形, 即 (2)位置关

23、系保持不变,数量关系变为 理由是:如图2,连接EG、DF交于点O,连接OC,四边形EFGD是矩形, Rt中,OG=OF,Rt中, D、E、F、C、G在以点O为圆心的圆上, DF为的直径, EG也是的直径,ECG=90,即 由知:设 分三种情况:(i)当时,如图3,过E作于H,则EHAD, 由勾股定理得: (ii)当时,如图1,过D作于H, (iii)当时,如图5, 综上所述,当为等腰三角形时,CG的长为或或点睛:两组角对应,两三角形相似.22、,;存在,;或;当时,.【解析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;

24、(3)先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值【详解】解:(1)将B(4,0)代入,解得,m=4,二次函数解析式为,令x=0,得y=4,C(0,4);(2)存在,理由:B(4,0),C(0,4),直线BC解析式为y=x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,MBC面积最大,=14b=0,b=4,M(2,6);(3)如图,点P在抛物线上,设P(m,),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,B(4,0),C(0,4),线段BC的垂直平分线的解析式为y=x

25、,m=,m=,P(,)或P(,);如图,设点P(t,),过点P作y轴的平行线l,过点C作l的垂线,点D在直线BC上,D(t,t+4),PD=(t+4)=,BE+CF=4,S四边形PBQC=2SPDC=2(SPCD+SBD)=2(PDCF+PDBE)=4PD=0t4,当t=2时,S四边形PBQC最大=1考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题23、【解析】先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;【详解】解:原式 【点睛】考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.24、(1)见解析;(2).【解析】(1)根据圆周角定理得到GABB,根据切线的性质得到GAB+GAF90,证明FGAB,等量代换即可证明;(2)连接OG,根据勾股定理求出OG,证明FAOBOG,根据相似三角形的性质列出比例式,计算即可.【详解】(1)证明:,.GABB,AF是O的切线,AFAO.GAB+GAF90.OEAC,F+GAF90.FGAB,FB;(2)解:连接OG.GABB,AGBG.OAOB6,OGAB.,FAOBOG90,FB,FAOBOG,.【点睛】本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁