《2022-2023学年江苏省东台市第四联盟市级名校中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年江苏省东台市第四联盟市级名校中考押题数学预测卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米ABC+1D32在,,则的值为( )ABCD3如图,在ABC中,C=90,B=30,AD是ABC的角平分线,DEAB,垂足为
2、点E,DE=1,则BC= ()AB2C3D+24下列各点中,在二次函数的图象上的是( )ABCD5魏晋时期的数学家刘徽首创割圆术为计算圆周率建立了严密的理论和完善的算法作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A0.5B1C3D6已知xa=2,xb=3,则x3a2b等于()AB1C17D727若数a,b在数轴上的位置如图示,则()Aa+b
3、0Bab0Cab0Dab08下列图形中,是中心对称但不是轴对称图形的为()ABCD9下列事件中是必然事件的是()A早晨的太阳一定从东方升起B中秋节的晚上一定能看到月亮C打开电视机,正在播少儿节目D小红今年14岁,她一定是初中学生10如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11化简的结果是_.12已知二次函数的图象如图所示,若方程有两个不相等的实数根,则的取值范围是_13如图,平行于x轴的直线AC分别交抛物线(x0)与(x0)于B、C
4、两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则=_14如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )A点M B点N C点P D点Q15如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于_16如图,在正
5、方形ABCD外取一点E,连接AE、BE、DE过点A作AE的垂线交DE于点P若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是 三、解答题(共8题,共72分)17(8分)如图,在RtABC中,ACB=90,AC=2cm,AB=4cm,动点P从点C出发,在BC边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿CAB以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作O(1)当时,求PCQ的面积;(2)设O的面积为s,求s与t的函数关系式;(3)当点Q在AB上运动时,O与R
6、tABC的一边相切,求t的值18(8分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O连接OA、OB、OC、ODOE是边CD的中线,且AOB+COD180(1)如图2,当ABO是等边三角形时,求证:OEAB;(2)如图3,当ABO是直角三角形时,且AOB90,求证:OEAB;(3)如图4,当ABO是任意三角形时,设OAD,OBC,试探究、之间存在的数量关系?结论“OEAB”还成立吗?若成立,请你证明;若不成立,请说明理由19(8分)如图,在RtABC中,C90,AB的垂直平分线交AC于点D,交AB于点E(1)求证:ADEABC;(2)当AC8,BC6时,求DE的长20(8分)如图,
7、在矩形ABCD中,对角线AC,BD相交于点O(1)画出AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论21(8分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58为了改善滑梯AB的安全性能,把倾斜角由58减至30,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58=0.85,cos58=0.53,tan58=1.60)22(10分)观察下列等式:222112+1322222+1422332+1第个等式为 ;根据上面等式的规律,猜想第n个等式
8、(用含n的式子表示,n是正整数),并说明你猜想的等式正确性23(12分)已知:如图所示,抛物线y=x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)(1)求抛物线的表达式;(2)设点P在该抛物线上滑动,且满足条件SPAB=1的点P有几个?并求出所有点P的坐标24如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.求反比例函数和一次函数的表达式;直接写出关于的不等式的解集.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】由题意可知,AC=1,AB=2,CAB=90据勾股定理则BC=m;AC+BC=(1+)m. 答:树高为(1+)米故选
9、C.2、A【解析】本题可以利用锐角三角函数的定义求解即可【详解】解:tanA=,AC=2BC,tanA=故选:A【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 3、C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据RtADE可得AD=2DE=2,根据题意可得ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1考点:角平分线的性质和中垂线的性质4、D【解析】将各选项的点逐一代入即可判断【详解】解:当x=1时,y=-1,故点不在二次函数的图象;当x=2时,y=-4,故点和点不在二次函数的图象;当x=-2时,y=-4,故点
10、在二次函数的图象;故答案为:D【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式5、C【解析】连接OC、OD,根据正六边形的性质得到COD60,得到COD是等边三角形,得到OCCD,根据题意计算即可【详解】连接OC、OD,六边形ABCDEF是正六边形,COD60,又OCOD,COD是等边三角形,OCCD,正六边形的周长:圆的直径6CD:2CD3,故选:C【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键6、A【解析】xa=2,xb=3,x3a2b=(xa)3(xb)2=89= ,故选A.7、D【解析】首先根据有理数a,b在数轴上的位置判断
11、出a、b两数的符号,从而确定答案【详解】由数轴可知:a0b,a-1,0b1,所以,A.a+b0,故原选项错误;B. ab0,故原选项错误;C.a-b0,故原选项错误;D.,正确.故选D【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a,b的大小关系8、C【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C考点:中心对称图形;
12、轴对称图形9、A【解析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解【详解】解:B、C、D选项为不确定事件,即随机事件故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起故选A【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件10、B【解析】过F作FHAD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF=,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论【详解】过F作FHAD于H,交ED于O,则FH=AB=1BF=1FC,BC=
13、AD=3,BF=AH=1,FC=HD=1,AF=,OHAE,=,OH=AE=,OF=FHOH=1=,AEFO,AMEFMO,=,AM=AF=,ADBF,ANDFNB,=,AN=AF=,MN=ANAM=,故选B【点睛】构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】先将分式进行通分,即可进行运算.【详解】=-=【点睛】此题主要考查分式的加减,解题的关键是先将它们通分.12、【解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可详解:由图象可知:二次函数y=ax2+bx+c的顶点坐标为(1,1
14、),=1,即b2-4ac=-20a,ax2+bx+c=k有两个不相等的实数根,方程ax2+bx+c-k=0的判别式0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)0抛物线开口向下a01-k0k1故答案为k1点睛:本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b2-4ac0时,二次函数y=ax2+bx+c的图象与x轴有两个交点13、5- 【解析】试题分析:本题我们可以假设一个点的坐标,然后进行求解设点C的坐标为(1,),则点B的坐标为(,),点D的坐标为(1,1),点E的坐标为(,1),则AB=,DE=1,则=5考点:二次函数的性质14、D
15、【解析】D试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D考点:1.动点问题的函数图象分析;2.排他法的应用.15、5【解析】根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可【详解】解:由图形可知,圆心先向前
16、走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:255,故答案为5【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度16、【解析】利用同角的余角相等,易得EAB=PAD,再结合已知条件利用SAS可证两三角形全等;过B作BFAE,交AE的延长线于F,利用中的BEP=90,利用勾股定理可求BE,结合AEP是等腰直角三角形,可证BEF是等腰直角三角形,再利用勾股定理可求EF、BF;利用中的全等,可得APD=AEB,结合三角形的外角的性质,易得BEP=90,即可证;连接BD,求出AB
17、D的面积,然后减去BDP的面积即可;在RtABF中,利用勾股定理可求AB2,即是正方形的面积【详解】EAB+BAP=90,PAD+BAP=90,EAB=PAD,又AE=AP,AB=AD,在APD和AEB中,APDAEB(SAS);故此选项成立;APDAEB,APD=AEB,AEB=AEP+BEP,APD=AEP+PAE,BEP=PAE=90,EBED;故此选项成立;过B作BFAE,交AE的延长线于F,AE=AP,EAP=90,AEP=APE=45,又中EBED,BFAF,FEB=FBE=45,又BE=,BF=EF=,故此选项不正确;如图,连接BD,在RtAEP中,AE=AP=1,EP=,又PB
18、=,BE=,APDAEB,PD=BE=,SABP+SADP=SABD-SBDP=S正方形ABCD-DPBE=(4+)-=+故此选项不正确EF=BF=,AE=1,在RtABF中,AB2=(AE+EF)2+BF2=4+,S正方形ABCD=AB2=4+,故此选项正确故答案为【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识三、解答题(共8题,共72分)17、(1);(2);(3)t的值为或1或【解析】(1)先根据t的值计算CQ和CP的长,由图形可知PCQ是直角三角形,根据三角形面积公式可得结论;(2)分两种情况:当Q在边AC上运动
19、时,当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;(3)分别当O与BC相切时、当O与AB相切时,当O与AC相切时三种情况分类讨论即可确定答案【详解】(1)当t=时,CQ=4t=4=2,即此时Q与A重合,CP=t=,ACB=90,SPCQ=CQPC=2=;(2)分两种情况:当Q在边AC上运动时,0t2,如图1,由题意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,S=;当Q在边AB上运动时,2t4如图2,设O与AB的另一个交点为D,连接PD,CP=t,AC+AQ=4t,PB=BCPC=2t,BQ=2+44
20、t=64t,PQ为O的直径,PDQ=90,RtACB中,AC=2cm,AB=4cm,B=30,RtPDB中,PD=PB=,BD=,QD=BQBD=64t=3,PQ=,S=;(3)分三种情况:当O与AC相切时,如图3,设切点为E,连接OE,过Q作QFAC于F,OEAC,AQ=4t2,RtAFQ中,AQF=30,AF=2t1,FQ=(2t1),FQOEPC,OQ=OP,EF=CE,FQ+PC=2OE=PQ,(2t1)+t=,解得:t=或(舍);当O与BC相切时,如图4,此时PQBC,BQ=64t,PB=2t,cos30=,t=1;当O与BA相切时,如图5,此时PQBA,BQ=64t,PB=2t,c
21、os30=,t=,综上所述,t的值为或1或【点睛】本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合的思想18、(1)详见解析;(2)详见解析;(3)+90;成立,理由详见解析【解析】(1)作OHAB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明OCEOBH,根据全等三角形的性质证明;(2)证明OCDOBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;(3)根据等腰三角形的性质、三角形内角和定理计算;延长OE至F,是EF=OE,连接FD、FC,根据平行四边形
22、的判定和性质、全等三角形的判定和性质证明【详解】(1)作OHAB于H,AD、BC的垂直平分线相交于点O,OD=OA,OB=OC,ABO是等边三角形,OD=OC,AOB=60,AOB+COD180COD=120,OE是边CD的中线,OECD,OCE=30,OA=OB,OHAB,BOH=30,BH=AB,在OCE和BOH中,OCEOBH,OE=BH,OE=AB;(2)AOB=90,AOB+COD=180,COD=90,在OCD和OBA中, ,OCDOBA,AB=CD,COD=90,OE是边CD的中线,OE=CD,OE=AB;(3)OAD=,OA=OD,AOD=1802,同理,BOC=1802,AO
23、B+COD=180,AOD+COB=180,1802+1802=180,整理得,+=90;延长OE至F,使EF=OE,连接FD、FC,则四边形FDOC是平行四边形, OCF+COD=180,AOB=FCO,在FCO和AOB中,FCOAOB,FO=AB,OE=FO=AB【点睛】本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键19、(1)见解析;(2)【解析】(1)根据两角对应相等,两三角形相似即可判定;(2)利用相似三角形的性质即可解决问题【详解】(1)
24、DEAB,AED=C=90A=A,AEDACB(2)在RtABC中,AC=8,BC=6,AB1DE垂直平分AB,AE=EB=2AEDACB,DE【点睛】本题考查了相似三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型20、(1)如图所示见解析;(2)四边形OCED是菱形理由见解析.【解析】(1)根据图形平移的性质画出平移后的DEC即可;(2)根据图形平移的性质得出ACDE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论【详解】(1)如图所示;(2)四边形OCED是菱形理由:D
25、EC由AOB平移而成,ACDE,BDCE,OA=DE,OB=CE,四边形OCED是平行四边形四边形ABCD是矩形,OA=OB,DE=CE,四边形OCED是菱形【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.21、调整后的滑梯AD比原滑梯AB增加2.5米【解析】试题分析: RtABD中,根据30的角所对的直角边是斜边的一半得到AD的长,然后在RtABC中,求得AB的长后用即可求得增加的长度试题解析: RtABD中,AC=3米,AD=2AC=6(m)在RtABC中, ADAB=63.532.5(m).调整后的滑梯AD比原滑梯AB增加2.5米.22、(1)5224
26、42+1;(2)(n+1)22nn2+1,证明详见解析【解析】(1)根据的规律即可得出第个等式;(2)第n个等式为(n+1)22nn2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边【详解】(1)222112+1322222+1422332+1第个等式为522442+1,故答案为:522442+1,(2)第n个等式为(n+1)22nn2+1(n+1)22nn2+2n+12nn2+1【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键23、 (1)y=x2+4x3;(2)满足条件的P点坐标有3个,它们是(2,1)或(2+,1)或(2,1)【解析】(1)由于已知抛物线
27、与x轴的交点坐标,则可利用交点式求出抛物线解析式;(2)根据二次函数图象上点的坐标特征,可设P(t,-t2+4t-3),根据三角形面积公式得到 2|-t2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t即可得到P点坐标.【详解】解:(1)抛物线解析式为y=(x1)(x3)=x2+4x3;(2)设P(t,t2+4t3),因为SPAB=1,AB=31=2,所以2|t2+4t3|=1,当t2+4t3=1时,t1=t2=2,此时P点坐标为(2,1);当t2+4t3=1时,t1=2+,t2=2,此时P点坐标为(2+,1)或(2,1),所以满足条件的P点坐标有3个,它们是(2,1)或(2
28、+,1)或(2,1)【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.24、(1)y=-y=x-1(1)x2【解析】分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.详解:(1), 点A(5,2),点B(2,3), 又点C在y轴负半轴,点D在第二象限,点C的坐标为(2,-1),点D的坐标为(-1,3)点在反比例函数y=的图象上, 反比例函数的表达式为 将A(5,2)、B(2,-1)代入y=kx+b,解得: 一次函数的表达式为(1)将代入,整理得: 一次函数图象与反比例函数图象无交点观察图形,可知:当x2时,反比例函数图象在一次函数图象上方,不等式kx+b的解集为x2点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点