2023届江苏省南京市六区中考三模数学试题含解析.doc

上传人:茅**** 文档编号:87784048 上传时间:2023-04-17 格式:DOC 页数:17 大小:688.50KB
返回 下载 相关 举报
2023届江苏省南京市六区中考三模数学试题含解析.doc_第1页
第1页 / 共17页
2023届江苏省南京市六区中考三模数学试题含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2023届江苏省南京市六区中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省南京市六区中考三模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1点P(2,5)关于y轴对称的点的坐标为()A(2,5)B(5,2)C(2,5)D(2,5)2下列成语描述的事件为随机事件的是()A水涨船高 B守株待兔 C水中捞月 D缘木求鱼3如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是(

2、)ABCD4下列运算正确的是()Aa3a=2aB(ab2)0=ab2C=D=95计算36(6)的结果等于()A6B9C30D66如果(x2)(x3)=x2pxq,那么p、q的值是( )Ap=5,q=6Bp=1,q=6Cp=1,q=6Dp=5,q=67如图,某计算机中有、三个按键,以下是这三个按键的功能(1):将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1(2):将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2(3):将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按

3、,之后以、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A0.01B0.1C10D1008一次函数的图象不经过( )A第一象限B第二象限C第三象限D第四象限9将一把直尺和一块含30和60角的三角板ABC按如图所示的位置放置,如果CDE=40,那么BAF的大小为()A10B15C20D2510的平方根是( )A2BC2D11“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根苏科版数学九年级(下册)P21”参考上述教材中的话,判断方程x22x=2实数根的情况是 ( )A有三个实数根B有两个实数根C有一个实数根D无

4、实数根12下列运算正确的()A(b2)3=b5Bx3x3=xC5y33y2=15y5Da+a2=a3二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,已知ABC中,ABAC5,BC8,将ABC沿射线BC方向平移m个单位得到DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是_14ABCD为矩形的四个顶点,AB16 cm,AD6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动,P、Q两点从出发开始到_秒时,点P和点Q的距离是10 cm.15因式分解:

5、a2b2abb 16如图,ABC内接于O,AB为O的直径,CAB=60,弦AD平分CAB,若AD=6,则AC=_17在平面直角坐标系中,P的圆心是(2,a)(a2),半径为2,函数y=x的图象被P截得的弦AB的长为,则a的值是_18把多项式a32a2+a分解因式的结果是 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DEAF,垂足为点E求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长20(6分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白

6、球,把它们充分搅匀“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;从中任意抽取1个球恰好是红球的概率是 ;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙你认为这个规则公平吗?请用列表法或画树状图法加以说明21(6分)(1)如图1,在矩形ABCD中,点O在边AB上,AOC=BOD,求证:AO=OB;(2)如图2,AB是O的直径,PA与O相切于点A,OP与O相交于点C,连接CB,OPA=40,求ABC的度数22(8分)如图所示,PB是O的切线,B为切点,圆心O在PC上,P=30,D为

7、弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.23(8分)如图,在四边形ABCD中,ADBC,BABC,BD平分ABC求证:四边形ABCD是菱形;过点D作DEBD,交BC的延长线于点E,若BC5,BD8,求四边形ABED的周长24(10分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?25(10分)(1)计算:|3|2sin30+()2(2)化简:.2

8、6(12分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度用测角仪在A处测得雕塑顶端点C的仰角为30,再往雕塑方向前进4米至B处,测得仰角为45问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值)27(12分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的面积为多少?参考答案一、选择题(本大题共12个小题

9、,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案【详解】点关于y轴对称的点的坐标为,故选:D【点睛】本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键.2、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B考点:随机事件.3、B【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称从物体的前面向后面投射所得的视图称主视图(正视图)能反映物体的前面形状;从物体

10、的上面向下面投射所得的视图称俯视图能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图能反映物体的左面形状故选B考点:三视图4、D【解析】直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案【详解】解:A、a3a=2a,故此选项错误;B、(ab2)0=1,故此选项错误;C、故此选项错误;D、=9,正确故选D【点睛】此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键5、A【解析】分析:根据有理数的除法法则计算可得详解:31(1)=(311)=1 故选A点睛:本题主要考查了有理数的除法,解题的关键是掌握有

11、理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除2除以任何一个不等于2的数,都得26、B【解析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值【详解】解:(x-2)(x+3)=x2+x-1,又(x-2)(x+3)=x2+px+q,x2+px+q=x2+x-1,p=1,q=-1故选:B【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加两个多项式相等时,它们同类项的系数对应相等7、B【解析】根据题中的按键顺序确定出显示的数即可【详解】

12、解:根据题意得: =40,=0.4,0.42=0.04,=0.4,=40,402=400,4006=464,则第400次为0.4故选B【点睛】此题考查了计算器数的平方,弄清按键顺序是解本题的关键8、B【解析】由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限【详解】解:,函数图象一定经过一、三象限;又,函数与y轴交于y轴负半轴,函数经过一、三、四象限,不经过第二象限故选B【点睛】此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响9、A【解析】先根据CDE=40,得出CED=50,再根据DEAF,即可得到CAF=50,最后根据BAC=60,即可得出BAF的大小【详解】

13、由图可得,CDE=40 ,C=90,CED=50,又DEAF,CAF=50,BAC=60,BAF=6050=10,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.10、D【解析】先化简,然后再根据平方根的定义求解即可【详解】=2,2的平方根是,的平方根是故选D【点睛】本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错11、C【解析】试题分析:由得,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注

14、意.12、C【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则详解:A、(b2)3=b6,故此选项错误;B、x3x3=1,故此选项错误;C、5y33y2=15y5,正确;D、a+a2,无法计算,故此选项错误故选C点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、或5或1【解析】根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可【详解】解:如图(1)当在ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(

15、2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:则AN=3,AC=,AD=m,得:,得m=,综上所述:m为或5或1,所以答案:或5或1【点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性.14、或【解析】作PHCD,垂足为H,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解【详解】设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,作PHCD,垂足为H,则PH=AD=6,PQ=10,DH=PA=3t,CQ=2t,HQ=CDDHCQ=|165t|,由勾股定理,得 解得 即

16、P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm.故答案为或.【点睛】考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ=CDDHCQ=|165t|是解题的关键.15、b2【解析】该题考查因式分解的定义首先可以提取一个公共项b,所以a2b2abbb(a22a1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b2abbb(a22a1)=b216、2【解析】首先连接BD,由AB是O的直径,可得C=D=90,然后由BAC=60,弦AD平分BAC,求得BAD的度数,又由AD=6,求得AB的长,继而求得答案【详解】解:连接BD,AB是O的直径,C=D=90,B

17、AC=60,弦AD平分BAC,BAD=BAC=30,在RtABD中,AB=4,在RtABC中,AC=ABcos60=4=2故答案为217、2+【解析】试题分析:过P点作PEAB于E,过P点作PCx轴于C,交AB于D,连接PAPEAB,AB=2,半径为2, AE=AB=,PA=2, 根据勾股定理得:PE=1,点A在直线y=x上,AOC=45,DCO=90, ODC=45,OCD是等腰直角三角形, OC=CD=2, PDE=ODC=45,DPE=PDE=45, DE=PE=1, PD=P的圆心是(2,a), a=PD+DC=2+【点睛】本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,

18、属于中等难度的题型解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45,这一个条件的应用也是很重要的18、【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式因此,三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)详见解析;(2).【解析】四边形ABCD是矩形,B=C=90,AB=CD,BC=AD,ADBC,EAD=AFB,DEAF,AED=90,

19、在ADE和FAB中,ADEFAB(AAS),AE=BF=1BF=FC=1BC=AD=2故在RtADE中,ADE=30,DE=,的长=.20、(1)必然,不可能;(2);(3)此游戏不公平【解析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案【详解】(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:;故答案为;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的

20、概率为:;则选择乙的概率为:,故此游戏不公平【点睛】此题主要考查了游戏公平性,正确列出树状图是解题关键21、(1)证明见解析;(2)25.【解析】试题分析: (1)根据等量代换可求得AOD=BOC,根据矩形的对边相等,每个角都是直角,可知A=B=90,AD=BC,根据三角形全等的判定AAS证得AODBOC,从而得证结论(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角POA的度数,然后利用圆周角定理来求ABC的度数试题解析:(1)AOC=BOD AOC -COD=BOD-COD即AOD=BOC 四边形ABCD是矩形A=B=90,AD=BC AO=OB (2)解:AB是的直径,PA与

21、相切于点A,PAAB,A=90. 又OPA=40,AOP=50,OB=OC,B=OCB. 又AOP=B+OCB,. 22、(1)见解析;(2)菱形【解析】试题分析:(1)由切线的性质得到OBP=90,进而得到BOP=60,由OC=BO,得到OBC=OCB=30,由等角对等边即可得到结论;(2)由对角线互相垂直平分的四边形是菱形证明即可试题解析:证明:(1)PB是O的切线,OBP=90,POB=90-30=60OB=OC,OBC=OCBPOB=OBC+OCB,OCB=30=P,PB=BC;(2)连接OD交BC于点MD是弧BC的中点,OD垂直平分BC在直角OMC中,OCM=30,OC=2OM=OD

22、,OM=DM,四边形BOCD是菱形23、(1)详见解析;(2)1.【解析】(1)根据平行线的性质得到ADBCBD,根据角平分线定义得到ABDCBD,等量代换得到ADBABD,根据等腰三角形的判定定理得到ADAB,根据菱形的判定即可得到结论;(2)由垂直的定义得到BDE90,等量代换得到CDEE,根据等腰三角形的判定得到CDCEBC,根据勾股定理得到DE6,于是得到结论【详解】(1)证明:ADBC,ADBCBD,BD平分ABC,ABDCBD,ADBABD,ADAB,BABC,ADBC,四边形ABCD是平行四边形,BABC,四边形ABCD是菱形;(2)解:DEBD,BDE90,DBC+EBDC+C

23、DE90,CBCD,DBCBDC,CDEE,CDCEBC,BE2BC10,BD8,DE6,四边形ABCD是菱形,ADABBC5,四边形ABED的周长AD+AB+BE+DE1【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键24、(1)y1;y2x24x+2;(2)5月出售每千克收益最大,最大为【解析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值【详解】解:(1)设y1kx+b,将(3,5)和(6,3)代入得,解得y1x+1设

24、y2a(x6)2+1,把(3,4)代入得,4a(36)2+1,解得ay2(x6)2+1,即y2x24x+2(2)收益Wy1y2,x+1(x24x+2)(x5)2+,a0,当x5时,W最大值故5月出售每千克收益最大,最大为元【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法25、 (1)2;(2) xy【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形

25、,约分即可得到结果.详解:(1)原式=342+4=2;(2)原式=xy点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.26、该雕塑的高度为(2+2)米【解析】过点C作CDAB,设CD=x,由CBD=45知BD=CD=x米,根据tanA=列出关于x的方程,解之可得【详解】解:如图,过点C作CDAB,交AB延长线于点D,设CD=x米,CBD=45,BDC=90,BD=CD=x米,A=30,AD=AB+BD=4+x,tanA=,

26、即,解得:x=2+2,答:该雕塑的高度为(2+2)米【点睛】本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用27、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.试题解析:(1)A(0,2),BCx轴,B(1,2),C(3,2),AB=1,CA=3,线段AB与线段CA的长度之比为;(2)B是函数y=(x0)的一点,C是函数y=(x0)的一点,B(,a),C(,a),AB=,CA=,线段AB与线段CA的长度之比为;(3)=,=,又OA=a,CDy轴,CD=4a,四边形AODC的面积为=(a+4a)=1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁