2023届广东省广州市荔湾区广雅实验校中考联考数学试卷含解析.doc

上传人:茅**** 文档编号:87783348 上传时间:2023-04-17 格式:DOC 页数:18 大小:876.50KB
返回 下载 相关 举报
2023届广东省广州市荔湾区广雅实验校中考联考数学试卷含解析.doc_第1页
第1页 / 共18页
2023届广东省广州市荔湾区广雅实验校中考联考数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023届广东省广州市荔湾区广雅实验校中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省广州市荔湾区广雅实验校中考联考数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1关于x的不等式x-b0恰有两个负整数解,则b的取值范围是A B C D 2一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )A第一象限B第二象限C第三象限D第四象限3自2013年10月总书记提出“精准扶贫”的重要思想以来各地积极推进精准扶贫,加大帮扶力度全国脱贫人口数不断增加

2、仅2017年我国减少的贫困人口就接近1100万人将1100万人用科学记数法表示为()A1.1103人B1.1107人C1.1108人D11106人4如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BCCDDA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动设P点运动时间为x(s),BPQ的面积为y(cm2),则y关于x的函数图象是( )ABCD5如图,已知ADE是ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为,直线BC与直线DE交于点F,那么下列结论不正确的是()ABACBDAECCFDDFDC

3、6用圆心角为120,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A cmB3cmC4cmD4cm7两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()ABCD8如果,则a的取值范围是( )Aa0Ba0Ca0Da0恰有两个负整数解,可得x的负整数解为-1和-2 综合上述可得故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.2、C【解析】y随x的增大而减小,可得一次函数y=kx+b单调递减,k0,又满足kb0,由此即可得出答案【详解】y随x的增大

4、而减小,一次函数y=kx+b单调递减,k0,kb0,直线经过第二、一、四象限,不经过第三象限,故选C【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k0,k、b是常数)的图象和性质是解题的关键.3、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:1100万=11000000=1.1107.故选B.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数

5、,表示时关键要正确确定a的值以及n的值4、C【解析】试题分析:由题意可得BQ=x0x1时,P点在BC边上,BP=3x,则BPQ的面积=BPBQ,解y=3xx=;故A选项错误;1x2时,P点在CD边上,则BPQ的面积=BQBC,解y=x3=;故B选项错误;2x3时,P点在AD边上,AP=93x,则BPQ的面积=APBQ,解y=(93x)x=;故D选项错误故选C考点:动点问题的函数图象5、D【解析】利用旋转不变性即可解决问题【详解】DAE是由BAC旋转得到,BAC=DAE=,B=D,ACB=DCF,CFD=BAC=,故A,B,C正确,故选D【点睛】本题考查旋转的性质,解题的关键是熟练掌握旋转不变性

6、解决问题,属于中考常考题型6、C【解析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高【详解】L4(cm);圆锥的底面半径为422(cm),这个圆锥形筒的高为(cm)故选C【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形7、C【解析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1+1+, 水之和为:+,混合液中的酒精与水的

7、容积之比为:(+)(+),故选C【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键8、C【解析】根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1若|-a|=-a,则可求得a的取值范围注意1的相反数是1【详解】因为|-a|1,所以-a1,那么a的取值范围是a1故选C【点睛】绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是19、D【解析】因为,所以,因为,故选D.10、C【解析】分a1和a1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解【详解】解:a1时,二次函数图

8、象开口向上,|x12|x22|,y1y2,无法确定y1+y2的正负情况,a(y1y2)1,a1时,二次函数图象开口向下,|x12|x22|,y1y2,无法确定y1+y2的正负情况,a(y1y2)1,综上所述,表达式正确的是a(y1y2)1故选:C【点睛】本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论二、填空题(共7小题,每小题3分,满分21分)11、【解析】由ABC中,点D、E分别在边AB、BC上,DEAC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案【详解】解:DEAC,DB:AB=BE

9、:BC,DB=4,AB=6,BE=3,4:6=3:BC,解得:BC=,EC=BCBE=3=故答案为【点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例12、13【解析】根据正方形的性质得出AD=AB,BAD=90,根据垂直得出DEA=AFB=90,求出EDA=FAB,根据AAS推出AEDBFA,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;【详解】ABCD是正方形(已知),AB=AD,ABC=BAD=90;又FAB+FBA=FAB+EAD=90,FBA=EAD(等

10、量代换);BFa于点F,DEa于点E,在RtAFB和RtAED中,AFBAED(AAS),AF=DE=8,BF=AE=5(全等三角形的对应边相等),EF=AF+AE=DE+BF=8+5=13.故答案为13.点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出AEDBFA是解此题的关键13、1x1【解析】试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)图象与x轴的另一个交点坐标为(-1,0)利用图象可知:ax2+bx+c0的解集即是y0的解集,-1x1考点:二次函数与不等式(组)14、1【解析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应

11、的t值【详解】由题意,s=1.2t2+60t=1.2(t250t+6161)=1.2(t1)2+750即当t=1秒时,飞机才能停下来故答案为1【点睛】本题考查了二次函数的应用解题时,利用配方法求得t=2时,s取最大值15、1.【解析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1

12、,0)代入得a=-0.5,抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=3,13-4=1,所以水面下降1.5m,水面宽度增加1米故答案为1【点睛】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型16、-12【解析】过E点作EFOC于F,如图所示:由条件可知:OE=OA=

13、5,所以EF=3,OF=4,则E点坐标为(-4,3)设反比例函数的解析式是y,则有k=-43=-12.故答案是:-12.17、3【解析】试题分析:数据3,x,3,3,3,6的中位数为3,解得x=3,数据的平均数=(33+3+3+3+6)=3,方差=(33)3+(33)3+(33)3+(33)3+(33)3+(63)3=3故答案为3考点:3方差;3中位数三、解答题(共7小题,满分69分)18、(1)y=x2+2x+4;M(1,5);(2)2m4;(3)P1(),P2(),P3(3,1),P4(3,7)【解析】试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M

14、的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得MCP=90,则若PCM与BCD相似,则要进行分类讨论,分成PCMBDC或PCMCDB两种,然后利用边的对应比值求出点坐标试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=x2+bx+c得,解得 二次函数解析式为y=x2+2x+4, 配方得y=(x1)2+5,点M的坐标为(1,5);(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得, 解得:直线AC的解析式为y=x+4,如图所示,

15、对称轴直线x=1与ABC两边分别交于点E、点F把x=1代入直线AC解析式y=x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)15m3,解得2m4;(3)连接MC,作MGy轴并延长交AC于点N,则点G坐标为(0,5) MG=1,GC=54=1MC=, 把y=5代入y=x+4解得x=1,则点N坐标为(1,5),NG=GC,GM=GC, NCG=GCM=45, NCM=90,由此可知,若点P在AC上,则MCP=90,则点D与点C必为相似三角形对应点若有PCMBDC,则有BD=1,CD=3, CP=, CD=DA=3, DCA=45,若点P在y轴右侧,作PHy轴, PCH=45,CP=

16、PH=把x=代入y=x+4,解得y=, P1();同理可得,若点P在y轴左侧,则把x=代入y=x+4,解得y= P2();若有PCMCDB,则有 CP=3 PH=3=3,若点P在y轴右侧,把x=3代入y=x+4,解得y=1;若点P在y轴左侧,把x=3代入y=x+4,解得y=7P3(3,1);P4(3,7)所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(3,7)考点:二次函数综合题19、 (1) (2) 【解析】【分析】(1)根据关联点的定义逐一进行判断即可得;(2)当时,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得; 由知,分两种情况画

17、出图形进行讨论即可得. 【详解】(1),x=2时,y=1,此时P(2,1),则d=1+2=3,符合定义,是关联点;,x=1时,y=,此时P(1,),则d=+=3,符合定义,是关联点;,x=4时,y=4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;,x=0时,y=0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,故答案为;(2)当时,此时矩形上的所有点都在抛物线的下方,; 由,如图2所示时,CF最长,当CF=4时,即=4,解得:t=,如图3所示时,DF最长,当DF=4时,即DF=4,解得 t=, 故答案为 【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概

18、念,能灵活应用新概念,结合图形解题是关键.20、(1)是;(2)见解析;(3)150【解析】(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS证明AECBED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,ABD是等边三角形,得出DAB=60,由SSS证明AEDAEC,得出CAE=DAE=15,求出DAC=CAE+DAE=30,BAC=BAECAE=30,由等腰三角形的性质和三角形内角和定理求出ACB和ACD的度数,即可得出答案【详解】解:(1)一个内角为120的菱形是等距四边形;故答案为是;(

19、2)如图2,图3所示:在图2中,由勾股定理得: 在图3中,由勾股定理得: 故答案为 (3)解:连接BD如图1所示:ABE与CDE都是等腰直角三角形,DE=EC,AE=EB,DEC+BEC=AEB+BEC,即AEC=DEB,在AEC和BED中, ,AECBED(SAS),AC=BD,四边形ABCD是以A为等距点的等距四边形,AD=AB=AC,AD=AB=BD,ABD是等边三角形,DAB=60,DAE=DABEAB=6045=15,在AED和AEC中, AEDAEC(SSS),CAE=DAE=15,DAC=CAE+DAE=30,BAC=BAECAE=30,AB=AC,AC=AD,BCD=ACB+A

20、CD=75+75=150【点睛】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键21、【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案试题解析:解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=点睛:本题主要考查了用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,

21、树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比22、 【解析】设=a, =b,则原方程组化为,求出方程组的解,再求出原方程组的解即可【详解】设=a, =b,则原方程组化为:,+得:4a=4,解得:a=1,把a=1代入得:1+b=3,解得:b=2,即,解得:,经检验是原方程组的解,所以原方程组的解是【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研

22、究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.23、(1)见解析;(2)EAF的度数为30【解析】(1)连接OD,如图,先证明ODAC,再利用DEAC得到ODDE,然后根据切线的判定定理得到结论;(2)利用圆周角定理得到AFB=90,再证明RtGEFRtGAE,利用相似比得到 于是可求出GF=1,然后在RtAEG中利用正弦定义求出EAF的度数即可【详解】(1)证明:连接OD,如图,OB=OD,OBD=ODB,AB=AC,ABC=C,ODB=C,ODAC,DEAC,ODDE,DE为O的切线;(2)解:AB为直径,AFB=90,EGF=AGF,RtGEFRtGAE,即整理得GF2+3

23、GF4=0,解得GF=1或GF=4(舍去),在RtAEG中,sinEAG EAG=30,即EAF的度数为30【点睛】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”也考查了圆周角定理24、(1)一件A型、B型丝绸的进价分别为500元,400元;(2),【解析】(1)根据题意应用分式方程即可;(2)根据条件中可以列出关于m的不等式组,求m的取值范围;本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系【详解】(1)设型丝绸的进价为元,则型丝绸的进价为元,根据题意得:,解得,经检验,为原方程的解,答:一件型、型丝绸的进价分别为500元,400元(2)根据题意得:,的取值范围为:,设销售这批丝绸的利润为,根据题意得:,()当时,时,销售这批丝绸的最大利润;()当时,销售这批丝绸的最大利润;()当时,当时,销售这批丝绸的最大利润综上所述:【点睛】本题综合考察了分式方程、不等式组以及一次函数的相关知识在第(2)问中,进一步考查了,如何解决含有字母系数的一次函数最值问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁