《282解直角三角形(第2课时)songchun (2).ppt》由会员分享,可在线阅读,更多相关《282解直角三角形(第2课时)songchun (2).ppt(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、解直角三角形的应用(二)解直角三角形的应用(二)解直角解直角三角形三角形A B90a2+b2=c2三角函数三角函数关系式关系式 温故而知新温故而知新解直角三角形解直角三角形常用关系:常用关系:ABaC b c 温故而知新温故而知新ABC如图,如图,RtABC中,中,C=90,(1)若)若A=30,BC=3,则,则AC=(2)若)若B=60,AC=3,则,则BC=(3)若)若A=,AC=3,则,则BC=(4)若)若A=,BC=m,则,则AC=例例3:2003年年10月月15日日“神舟神舟”5号载人航天飞船发射成功当飞船完成变号载人航天飞船发射成功当飞船完成变轨后,就在离地球表面轨后,就在离地球表
2、面350km的圆形轨道上运行如图,当飞船运行到地球的圆形轨道上运行如图,当飞船运行到地球表面上表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与这样的最远点与P点的距离是多少?(地球半径约为点的距离是多少?(地球半径约为6 400km,结果精确到,结果精确到0.1km)分析分析:从飞船上能最远直接从飞船上能最远直接看到的地球上的点,应是视看到的地球上的点,应是视线与地球相切时的切点线与地球相切时的切点OQFP如图,如图,O表示地球,点表示地球,点F是飞船的位置,是飞船的位置,FQ是是 O的切线,切点的切线,
3、切点Q是从飞船观测是从飞船观测地球时的最远点地球时的最远点PQ 的长就是地面的长就是地面上上P、Q两点间的距离,为计算两点间的距离,为计算PQ 的的长需先求出长需先求出POQ(即(即a)解:在图中,解:在图中,FQ是是 O的切线,的切线,FOQ是直角三角形是直角三角形 PQ的长为的长为 当飞船在当飞船在P点正上方时,从飞船观测地球时的最远点距离点正上方时,从飞船观测地球时的最远点距离P点约点约2009.6kmOQFPCOS a=OQOF64006400+3500.948仰角和俯角铅铅直直线线水平线水平线视线视线视线视线仰角仰角俯角俯角在在视视线线与与水水平平线线所所成成的的角角中中,视视线线在
4、在水水平平线线上上方方的的叫叫做做仰仰角角,在在水水平平线下方的叫做线下方的叫做俯角俯角.【例例1 1】如图,直升飞机在跨江大桥如图,直升飞机在跨江大桥AB的上方的上方P点处,此时飞机离地面的高度点处,此时飞机离地面的高度PO=450米,且米,且A、B、O三点在一条直线上,测得大桥两端的俯角三点在一条直线上,测得大桥两端的俯角分别为分别为=30,=45,求大桥的长,求大桥的长AB.450米米 合作与探究合作与探究解:解:由题意得,在由题意得,在RtPAO与与RtPBO中中答:大桥的长答:大桥的长AB为为 PABO答案答案:米米 合作与探究合作与探究变题变题1 1:如图,直升飞机在长如图,直升飞
5、机在长400米的跨江大桥米的跨江大桥AB的上方的上方P点处,且点处,且A、B、O三点在一条直线三点在一条直线上,在大桥的两端测得飞机的仰角分别为上,在大桥的两端测得飞机的仰角分别为30和和45,求飞机的高度,求飞机的高度PO.ABO3045400米米P4530OBA200米米 合作与探究合作与探究例例2 2:如图,直升飞机在高为如图,直升飞机在高为200米的大楼米的大楼AB上上方方P点处,从大楼的顶部和底部测得飞机的仰点处,从大楼的顶部和底部测得飞机的仰角为角为30和和45,求飞机的高度,求飞机的高度PO.LUD答案答案:米米P 合作与探究合作与探究例例2 2:如图,直升飞机在高为如图,直升飞
6、机在高为200米的大楼米的大楼AB上上方方P点处,从大楼的顶部和底部测得飞机的仰点处,从大楼的顶部和底部测得飞机的仰角为角为30和和45,求飞机的高度,求飞机的高度PO.4530POBA200米米C 合作与探究合作与探究4530POBA200米米C例例2 2:如图,直升飞机在高为如图,直升飞机在高为200米的大楼米的大楼AB上上方方P点处,从大楼的顶部和底部测得飞机的仰点处,从大楼的顶部和底部测得飞机的仰角为角为30和和45,求飞机的高度,求飞机的高度PO.合作与探究合作与探究例例2 2:如图,直升飞机在高为如图,直升飞机在高为200米的大楼米的大楼AB上上方方P点处,从大楼的顶部和底部测得飞
7、机的仰点处,从大楼的顶部和底部测得飞机的仰角为角为30和和45,求飞机的高度,求飞机的高度PO.4530POBA200米米C200米米POBA4530D答案答案:米米 合作与探究合作与探究变题变题2 2:如图,直升飞机在高为如图,直升飞机在高为200米的大楼米的大楼AB左侧左侧P点处,测得大楼的顶部仰角为点处,测得大楼的顶部仰角为45,测得大测得大楼底部俯角为楼底部俯角为30,求飞机与大楼之间的水平距,求飞机与大楼之间的水平距离离.4530200米米POBD 归纳与提高归纳与提高4530PA200米米CBO453045060452002004530ABOPABOP3045450为测量校内旗杆高
8、度,如图,在C点测得旗杆顶端A的仰角为30,向前走了6米到达D点,在D点测得旗杆顶端A的仰角为60(测角器的高度不计).AD_米;求旗杆AB的高度().ADCB在C点测得塔顶E的仰角为45,在D点测得塔顶E的仰角为60,已知测角仪AC的高为16米,CD的长为6米,CD所在的水平线CGEF于点G求铁塔EF的高(结果精确到01米)1 1数形结合思想数形结合思想.方法:方法:把数学问题把数学问题转化成解直角三角形转化成解直角三角形问题,问题,如果示意图不是直角三角形,可添加适当的辅如果示意图不是直角三角形,可添加适当的辅助线,助线,构造出直角三角形构造出直角三角形.思想与方法思想与方法2 2方程思想
9、方程思想.3 3转化(化归)思想转化(化归)思想.当堂反馈当堂反馈2.如图如图2,在离铁塔,在离铁塔BE 120m的的A处,处,用测角仪测量塔顶的仰角为用测角仪测量塔顶的仰角为30,已,已知测角仪高知测角仪高AD=1.5m,则塔高,则塔高BE=_ (根号保留)(根号保留)图图1图图21.如图如图1,已知楼房,已知楼房AB高为高为50m,铁塔塔基距楼房地基,铁塔塔基距楼房地基间的水平距离间的水平距离BD为为100m,塔高,塔高CD为为 m,则下面结论中正确的是(则下面结论中正确的是()A由楼顶望塔顶仰角为由楼顶望塔顶仰角为60B由楼顶望塔基俯角为由楼顶望塔基俯角为60C由楼顶望塔顶仰角为由楼顶望
10、塔顶仰角为30 D由楼顶望塔基俯角为由楼顶望塔基俯角为30C 当堂反馈当堂反馈3.如图如图3,从地面上的,从地面上的C,D两点测得树顶两点测得树顶A仰角分别是仰角分别是45和和30,已知,已知CD=200m,点,点C在在BD上,则树高上,则树高AB等等于于 (根号保留)(根号保留)4.如图如图4,将宽为,将宽为1cm的纸条沿的纸条沿BC折叠,使折叠,使CAB=45,则折叠后重叠部分的面积为,则折叠后重叠部分的面积为 (根号保留)(根号保留)图图3图图4思考:思考:有一块三形场地有一块三形场地ABC,测得其中,测得其中AB边长为边长为60米,米,AC边长边长50米,米,ABC=30,试求出这个三
11、,试求出这个三角形场地的面积角形场地的面积 更上一层楼更上一层楼必做题:必做题:书本书本P96/4、P97/7题题学生小王帮在测绘局工作的爸爸买了一些仪器后与同学在学生小王帮在测绘局工作的爸爸买了一些仪器后与同学在环西文化广场休息环西文化广场休息,看到濠河对岸的电视塔,他想用手中看到濠河对岸的电视塔,他想用手中的测角仪和卷尺不过河测出电视塔空中塔楼的高度的测角仪和卷尺不过河测出电视塔空中塔楼的高度.现已测现已测出出ADB=40,由于不能过河,因此无法知道,由于不能过河,因此无法知道BD的长度,的长度,于是他向前走于是他向前走50米到达米到达C处测得处测得ACB=55,但他们在计算,但他们在计算中碰到了困难,请大家一起想想办法,求出电视塔塔楼中碰到了困难,请大家一起想想办法,求出电视塔塔楼AB的高的高.更上一层楼更上一层楼(参考数据:(参考数据:)答案:答案:空中塔楼空中塔楼AB高高约为约为105米米塔楼塔楼濠濠河河 ABCD50m 5540