《282解直角三角形第1课时课件 (2).ppt》由会员分享,可在线阅读,更多相关《282解直角三角形第1课时课件 (2).ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、复习复习30、45、60角的正弦值、余弦值和正切值如下表:角的正弦值、余弦值和正切值如下表: 锐角a三角函数304560sin acos atan a1222322212332331对于对于sinsin与与tantan,角度越大,函数值也越大;(带,角度越大,函数值也越大;(带正正)对于对于coscos,角度越大,函数值越小。,角度越大,函数值越小。问题:问题: 要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角成的角a一般要满足一般要满足50a75.现有一个长现有一个长6m的梯子,问:的梯子,问:(1)使用这个梯子最高可以安
2、全攀上多高的墙(精确到)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m)?)?(2)当梯子底端距离墙面)当梯子底端距离墙面2.4m时,梯子与地面所成的角时,梯子与地面所成的角a等于多少(精等于多少(精确到确到1)?这时人是否能够安全使用这个梯子?)?这时人是否能够安全使用这个梯子?这样的问题怎么解决这样的问题怎么解决问题(问题(1)可以归结为:在)可以归结为:在Rt ABC中,已知中,已知A75,斜,斜边边AB6,求,求A的对边的对边BC的长的长 问题(问题(1)当梯子与地面所成的角)当梯子与地面所成的角a为为75时,梯子顶端与地面的时,梯子顶端与地面的距离是使用这个梯子所能攀到的最大高
3、度距离是使用这个梯子所能攀到的最大高度因此使用这个梯子能够安全攀到墙面的最大高度约是因此使用这个梯子能够安全攀到墙面的最大高度约是5.8mABBCA sin75sin6sinAABBC所以所以 BC60.975.8由计算器求得由计算器求得 sin750.97由由 得得ABC对于问题(对于问题(2),当梯子底端距离墙面),当梯子底端距离墙面2.4m时,求梯子与地面所成的时,求梯子与地面所成的角角a的问题,可以归结为:在的问题,可以归结为:在RtABC中,已知中,已知AC2.4,斜边,斜边AB6,求锐角求锐角a的度数的度数由于由于4 . 064 . 2cosABACa利用计算器求得利用计算器求得a
4、66 因此当梯子底墙距离墙面因此当梯子底墙距离墙面2.4m时,梯子与地面时,梯子与地面所成的角大约是所成的角大约是66由由506675可知,这时使用这个梯子是安全的可知,这时使用这个梯子是安全的ABC在图中的在图中的 Rt ABC中,中,(1)根据)根据A75,斜边,斜边AB6,你能求出这个直角三角形的其他元素吗?,你能求出这个直角三角形的其他元素吗?探究探究ABC能能sinsin6 sin75BCABCABAABcoscos6 cos75ACAACABAAB90909075ABBA 6=75在图中的在图中的RtABC中,中,(2)根据)根据AC2.4,斜边,斜边AB6,你能求出这个直角三角形
5、的其他元素吗?,你能求出这个直角三角形的其他元素吗?探究探究222222262.45.5ABACBCBCABAC2.4coscos0.4666ACAAAAB 9090906624ABBAABC能能62.4事实上,在直角三角形的六个元素中,事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其除直角外,如果再知道两个元素(其中至少有中至少有一个是边一个是边),这个三角形就),这个三角形就可以确定下来,这样就可以由已知的可以确定下来,这样就可以由已知的两个元素求出其余的三个元素两个元素求出其余的三个元素ABabcC解直角三角形解直角三角形:在直角三角形中,由已知元素求未知元素的过程在直
6、角三角形中,由已知元素求未知元素的过程在解直角三角形的过程中,一般要用到下面一些关系:在解直角三角形的过程中,一般要用到下面一些关系:解直角三角形解直角三角形(2)两锐角之间的关系)两锐角之间的关系AB90(3)边角之间的关系)边角之间的关系caAA斜边的对边sincbBB斜边的对边sincbAA斜边的邻边coscaBB斜边的邻边cosbaAAA的邻边的对边tanabBBB的邻边的对边tan(1)三边之间的关系)三边之间的关系 222cba(勾股定理)(勾股定理)ABabcC在解直角三角形的过程中,一般要用到下面一些关系:在解直角三角形的过程中,一般要用到下面一些关系:例例1 如图,在如图,在
7、RtABC中,中,C90, 解这个直角三角形解这个直角三角形6,2BCAC解:解:326tanACBCA60A30609090AB222ACABABC26例例2 如图,在如图,在RtABC中,中,B35,b=20,解这个直角三角形,解这个直角三角形(精确到(精确到0.1)解:解:A90B903555abB tan6 .2870. 02035tan20tanBbacbB sin1 .3557. 02035sin20sinBbcABCabc2035你还有其他你还有其他方法求出方法求出c吗?吗?例例3 如图,在如图,在RtABC中,中,C90,AC=6, BAC的平分线的平分线 ,解这个直角三角形。
8、,解这个直角三角形。4 3AD DABC64 3解:解:63cos24 3ACCADAD30CAD因为因为AD平分平分BAC60 ,30CABB 12,6 3ABBC在在RtABC中,中,C90,根据下列条件解直角三角形;,根据下列条件解直角三角形;(1)a = , b = 20 ;练习练习解:根据勾股定理解:根据勾股定理2222302010 13Cab203tan320 3aAb30A90903060BAABCb=20a=c20 320 3 在在RtABC中,中,C90,根据下列条件解直角三角形;,根据下列条件解直角三角形; (2) B72,c = 14.ABCbac=14解:解:sinbB
9、csin14 sin7213.3bcB907218AcosaBccos14 cos724.34acB 解决有关比萨斜塔倾斜的问题解决有关比萨斜塔倾斜的问题 设塔顶中心点为设塔顶中心点为B,塔身中心线与垂直中心线的夹角为,塔身中心线与垂直中心线的夹角为A,过过B点向垂直中心线引垂线,垂足为点点向垂直中心线引垂线,垂足为点C(如图),在(如图),在RtABC中,中,C90,BC5.2m,AB54.5m0954. 05 .542 . 5sinABBCA所以所以A528 可以求出可以求出2001年纠偏后塔身中心线与垂直中心线的夹角年纠偏后塔身中心线与垂直中心线的夹角你愿意试着计算一下吗?你愿意试着计算
10、一下吗?ABCABC解直角解直角三角形三角形A B90a2+b2=c2三角函数三角函数关系式关系式计算器计算器 由锐角求三角函数值由锐角求三角函数值由三角函数值求锐角由三角函数值求锐角sin,sinabABcccos,cosbaAAcctan,tanabABba 归纳小结归纳小结解直角三角形:解直角三角形:由已知元素求未知元素的过程由已知元素求未知元素的过程直角三角形中,直角三角形中,ABA的对边的对边aCA的邻边的邻边b斜边斜边c例例4: 2008年年10月月15日日“神舟神舟”7号载人航天飞船发射成功当飞船完成变号载人航天飞船发射成功当飞船完成变轨后,就在离地球表面轨后,就在离地球表面35
11、0km的圆形轨道上运行如图,当飞船运行到地球的圆形轨道上运行如图,当飞船运行到地球表面上表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与这样的最远点与P点的距离是多少?(地球半径约为点的距离是多少?(地球半径约为6 400km,结果精确到,结果精确到0.1km) 分析分析:从飞船上能最远直接从飞船上能最远直接看到的地球上的点,应是视看到的地球上的点,应是视线与地球相切时的切点线与地球相切时的切点OQFP 如图,如图,O O表示地球,点表示地球,点F F是飞船是飞船的位置,的位置,FQFQ是是O O的切线,
12、切点的切线,切点Q Q是是从飞船观测地球时的最远从飞船观测地球时的最远点点 的长就是地面上的长就是地面上P P、Q Q两点间的距离,为计算两点间的距离,为计算 的长需的长需先求出先求出POQPOQ(即(即a a)PQPQPQ例题例题 解:在图中,解:在图中,FQ是是 O的切线,的切线,FOQ是直角三角形是直角三角形95. 035064006400cosOFOQa18a PQ的长为的长为6 .200964014. 3640018018 当飞船在当飞船在P点正上方时,从飞船观测地球时的最远点距离点正上方时,从飞船观测地球时的最远点距离P点约点约2009.6kmOQFP2. 如图,沿如图,沿AC方向
13、开山修路为了加快施工进度,要在小山的另一边同方向开山修路为了加快施工进度,要在小山的另一边同时施工,从时施工,从AC上的一点上的一点B取取ABD = 140,BD = 520m,D=50,那,那么开挖点么开挖点E离离D多远正好能使多远正好能使A,C,E成一直线(精确到成一直线(精确到0.1m)50140520mABCEDBED=ABDD=90cosDEBDEBDcosDEBDE BDcos505200.64 520332.8答:开挖点答:开挖点E离离点点D 332.8m正好能使正好能使A,C,E成一直线成一直线.解:要使解:要使A、C、E在同一直线上,在同一直线上,则则 ABD是是 BDE 的一个外角的一个外角(2)两锐角之间的关系)两锐角之间的关系AB90(3)边角之间的关系)边角之间的关系caAA斜边的对边sincbBB斜边的对边sincbAA斜边的邻边coscaBB斜边的邻边cosbaAAA的邻边的对边tanabBBB的邻边的对边tan(1)三边之间的关系)三边之间的关系 222cba(勾股定理)(勾股定理)ABabcC在解直角三角形的过程中,一般要用到下面一些关系:在解直角三角形的过程中,一般要用到下面一些关系: