切线长定理课件.pptx

上传人:yan****nan 文档编号:87587628 上传时间:2023-04-16 格式:PPTX 页数:29 大小:3.26MB
返回 下载 相关 举报
切线长定理课件.pptx_第1页
第1页 / 共29页
切线长定理课件.pptx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《切线长定理课件.pptx》由会员分享,可在线阅读,更多相关《切线长定理课件.pptx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、问题问题1 1、经过平面上一个已知点,作已知、经过平面上一个已知点,作已知圆的切线会有怎样的情形?圆的切线会有怎样的情形?O50 2 2、这样的切线能、这样的切线能画出几条?画出几条?如下左图,如下左图,借助三角板,我们可以画出借助三角板,我们可以画出PAPA是是OO的切线的切线。3 3、如果、如果P=50,P=50,求求AOBAOB的度数的度数130问题问题2 2、1 1、经过圆外一点、经过圆外一点P P,如何作已知,如何作已知O O的的切线?切线?O。ABP思考思考:已画出切线:已画出切线PA、PB,A、B为切点,为切点,则则OAP=,连接连接OP,可知,可知A、B 除了除了在在 O上,还

2、在怎样的圆上上,还在怎样的圆上?90如何用圆规和直尺作出这两条切线呢?如何用圆规和直尺作出这两条切线呢?尺规作图:尺规作图:过过 O外一点作外一点作 O的切线的切线O PABO在经过圆外一点的切线上,这一点和切点之间在经过圆外一点的切线上,这一点和切点之间的线段的长叫做的线段的长叫做这点到圆的切线长这点到圆的切线长OPAB切线切线与与切线长切线长是一回事吗?是一回事吗?它们有什么区别与联系呢?它们有什么区别与联系呢?切线和切线长是两个不同的概念:切线和切线长是两个不同的概念:1、切线是一条与圆相切的直线,、切线是一条与圆相切的直线,不能度量不能度量;2、切线长是、切线长是线段线段的长,这条线段

3、的两个端点的长,这条线段的两个端点分别是圆外一点和切点分别是圆外一点和切点,可以度量可以度量。OPAB比一比比一比 OABP思考思考:已知已知 O切线切线PA、PB,A、B为为切点,把圆沿着直线切点,把圆沿着直线OP对折对折,你能发你能发现什么现什么?12折一折折一折请证明你所发现的结论。请证明你所发现的结论。APOBPA=PBOPA=OPB证明:证明:PAPA,PBPB与与O O相切,点相切,点A A,B B是切点是切点 OAPAOAPA,OBPBOBPB 即即OAP=OBP=90 OA=OB,OP=OP RtAOPRtBOP(HL)RtAOPRtBOP(HL)PA=PB OPA=OPB试用

4、文字语言试用文字语言叙述你所发现叙述你所发现的结论的结论证一证证一证PA、PB分别切分别切 O于于A、BPA=PBOPA=OPB 从圆外一点引圆的两条切线,从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。两条切线的夹角。几何语言几何语言:反思反思:切线长定理为证明:切线长定理为证明线段相等线段相等、角相角相等等提供新的方法提供新的方法OPAB 切线长定理切线长定理 APOB 若连结两切点若连结两切点A A、B B,ABAB交交OPOP于点于点M.M.你又能得你又能得出什么新的结论出什么新的结论?并给出证明并给出证明.OP

5、垂直平分垂直平分AB证明:证明:PAPA,PBPB是是O O的切线的切线,点点A A,B B是切点是切点 PA=PB OPA=OPB PABPAB是等腰三角形是等腰三角形,PMPM为为顶角顶角的平分线的平分线 OP垂直平分垂直平分ABM试一试试一试APO。B 若延长若延长PO交交 O于点于点C,连结,连结CA、CB,你又你又能得出什么新的结论能得出什么新的结论?并给出证明并给出证明.CA=CB证明:证明:PAPA,PBPB是是O O的切线的切线,点点A A,B B是切点是切点 PA=PB OPA=OPB PC=PCPC=PC PCA PCB AC=BCAC=BCC。PBAO(3)连结圆心和圆外

6、一点)连结圆心和圆外一点(2)连结两切点)连结两切点(1)分别连结圆心和切点)分别连结圆心和切点反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。想一想想一想探究:探究:PA、PB是是 O的两条切的两条切线,线,A、B为切点,直线为切点,直线OP交于交于 O于点于点D、E,交,交AB于于C。BAPOCED(1)写出图中所有的垂直关系)写出图中所有的垂直关系OAPA,OB PB,AB OP(3)写出图中所有的全等三角形)写出图中所有的全等三角形AOP BOP,AOC BOC,ACP BCP(4)写出图中所有的等腰三角形)写出图中所有的等腰三角形ABP AOB(2)写出图中与)写出图中与

7、OAC相等的角相等的角OAC=OBC=APC=BPC例例1 1、已知:、已知:P P为为O O外一点,外一点,PAPA、PBPB为为O O的的切线,切线,A A、B B为切点,为切点,BCBC是直径。是直径。求证:求证:ACOPACOPPACBDO 例题讲解例题讲解 练习练习1.(口答)如图所示(口答)如图所示PA、PB分别切分别切圆圆O于于A、B,并与圆,并与圆O的切线分别相交于的切线分别相交于C、D,已知,已知PA=7cm,(1)求求PCD的周长的周长(2)如果如果P=46,求求COD的度数的度数C OPBDAE切线长定理切线长定理 从圆外一点引圆的两条切线,它们从圆外一点引圆的两条切线,

8、它们的切线长相等,圆心和这一点的连线平分两的切线长相等,圆心和这一点的连线平分两 条切线的夹角条切线的夹角。APO。BECDPA、PB分别切分别切 O于于A、BPA=PB,OPA=OPBOP垂直平分垂直平分AB 切线长定理为证明切线长定理为证明线段相等,角线段相等,角相等,弧相等,垂直关系相等,弧相等,垂直关系提供了理论提供了理论依据。必须掌握并能灵活应用。依据。必须掌握并能灵活应用。我们学过的切线,常有我们学过的切线,常有 五个五个 性质:性质:1 1、切线和圆只有一个公共点;、切线和圆只有一个公共点;2 2、切线和圆心的距离等于圆的半径;、切线和圆心的距离等于圆的半径;3 3、切线垂直于过

9、切点的半径;、切线垂直于过切点的半径;4 4、经过圆心垂直于切线的直线必过切点;、经过圆心垂直于切线的直线必过切点;5 5、经过切点垂直于切线的直线必过圆心。、经过切点垂直于切线的直线必过圆心。6 6、从圆外一点引圆的两条切线,它们的切线长相等,、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。圆心和这一点的连线平分两条切线的夹角。六个六个思考:如何在三角形的铁皮上作一个面积最思考:如何在三角形的铁皮上作一个面积最大的圆呢?大的圆呢?OEBDCAF阅读课本97页,思考:1、什么是三角形的内切圆?2、什么是三角形的内心?1.1.一个三角形有且只有一个内切圆;一个

10、三角形有且只有一个内切圆;2.2.一个圆有无数个外切三角形;一个圆有无数个外切三角形;3.3.三角形的内心就是三角形三条内角平三角形的内心就是三角形三条内角平 分线的交点;分线的交点;4.4.三角形的内心到三角形三边的距离相等。三角形的内心到三角形三边的距离相等。o外切圆圆心:外切圆圆心:三角形三边三角形三边垂直平分线的交点垂直平分线的交点。外切圆的半径:外切圆的半径:交点到三交点到三角形任意一个定点的距离。角形任意一个定点的距离。三角形外接圆三角形外接圆三角形内切圆三角形内切圆o内切圆圆心:内切圆圆心:三角形三个三角形三个内角平分线的交点。内角平分线的交点。内切圆的半径:内切圆的半径:交点到

11、三交点到三角形任意一边的垂直距离。角形任意一边的垂直距离。A AA AB BB BC CC C例例3、如图,、如图,ABC中中,C=90,它的它的内切圆内切圆O分别与边分别与边AB、BC、CA相切相切于点于点D、E、F,且,且BD=12,AD=8,求求 O的半径的半径r.OEBDCAF例例1 ABCABC的内切圆的内切圆的内切圆的内切圆 O O与与与与BCBC、CACA、ABAB分别相切于分别相切于分别相切于分别相切于 点点点点D D、E E、F F,且,且,且,且AB=9cmAB=9cm,BC=14cmBC=14cm,CA=13cmCA=13cm,求求求求AFAF、BDBD、CECE的长的长

12、的长的长.解解:设设设设AF=x(cm),BD=y(cm),CEAF=x(cm),BD=y(cm),CEz(cmz(cm)AF=4(cm),BD=5(cm),CE=9(cm).AF=4(cm),BD=5(cm),CE=9(cm).O O与与与与ABCABC的三边都相切的三边都相切的三边都相切的三边都相切AFAFAE,BDAE,BDBF,CEBF,CECDCD则有则有则有则有x xy y9 9y yz z1414x xz z1313解得解得解得解得x x4 4y y5 5z z9 9例例4 、如图,四边形、如图,四边形ABCDABCD的边的边ABAB、BCBC、CDCD、DADA和圆和圆O O分

13、别分别相切于点相切于点L L、M M、N N、P P,求证:求证:AD+BC=AB+CDAD+BC=AB+CDDLMNABCOP证明:由切线长定理得证明:由切线长定理得AL=APAL=AP,LB=MB,NC=MCLB=MB,NC=MC,DN=DPDN=DPAL+LB+NC+DN=AP+MB+AL+LB+NC+DN=AP+MB+MC+DPMC+DP 即即 AB+CD=AD+BCAB+CD=AD+BC补充:补充:圆的外切四边形的两组对边的和相等圆的外切四边形的两组对边的和相等练习练习2.如图,如图,AB是是 O的直径,的直径,AD、DC、BC是切线,点是切线,点A、E、B为切点,为切点,(1)求证

14、:求证:OD OC (2)若若BC=9,AD=4,求,求OB的长的长.OABCDE OABCDEF OABCDE选做题:如图,选做题:如图,AB是是 O的直径,的直径,AD、DC、BC是切线,点是切线,点A、E、B为切点,若为切点,若BC=9,AD=4,求,求OE的长的长.1、有时候读书是一种巧妙地避开思考的方法。3月-233月-23Friday,March 31,20232、阅读一切好书如同和过去最杰出的人谈话。00:18:2600:18:2600:183/31/2023 12:18:26 AM3、越是没有本领的就越加自命不凡。3月-2300:18:2600:18Mar-2331-Mar-2

15、34、越是无能的人,越喜欢挑剔别人的错儿。00:18:2600:18:2600:18Friday,March 31,20235、知人者智,自知者明。胜人者有力,自胜者强。3月-233月-2300:18:2600:18:26March 31,20236、意志坚强的人能把世界放在手中像泥块一样任意揉捏。31 三月 202312:18:26 上午00:18:263月-237、最具挑战性的挑战莫过于提升自我。三月 2312:18 上午3月-2300:18March 31,20238、业余生活要有意义,不要越轨。2023/3/31 0:18:2600:18:2631 March 20239、一个人即使已

16、登上顶峰,也仍要自强不息。12:18:26 上午12:18 上午00:18:263月-2310、你要做多大的事情,就该承受多大的压力。3/31/2023 12:18:26 AM00:18:2631-3月-2311、自己要先看得起自己,别人才会看得起你。3/31/2023 12:18 AM3/31/2023 12:18 AM3月-233月-2312、这一秒不放弃,下一秒就会有希望。31-Mar-2331 March 20233月-2313、无论才能知识多么卓著,如果缺乏热情,则无异纸上画饼充饥,无补于事。Friday,March 31,202331-Mar-233月-2314、我只是自己不放过自己而已,现在我不会再逼自己眷恋了。3月-2300:18:2631 March 202300:18谢谢大家谢谢大家

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 管理手册

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁