《221直线与平面平行的判定 (2)(教育精品).ppt》由会员分享,可在线阅读,更多相关《221直线与平面平行的判定 (2)(教育精品).ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.2.1直线与平面平行的判定教学目标教学目标 使学生掌握直线与平面平行的判定定理,并会用判定定理证明直线与平面 平行。教学重点教学重点:直线与平面平行的判定定理的应用。教学难点教学难点:判定定理的理解。复习提问复习提问直线与平面有什么样的位置关系?直线与平面有什么样的位置关系?1.1.直线在平面内直线在平面内有无数个公共点;有无数个公共点;2.2.直线与平面相交直线与平面相交有且只有一个公共点;有且只有一个公共点;3.3.直线与平面平行直线与平面平行没有公共点。没有公共点。aaa动手做做看动手做做看将课本的一边将课本的一边AB紧靠桌面,并绕紧靠桌面,并绕AB转动,观察转动,观察AB的对边的对
2、边CD在各个位置时,是不是都与桌面所在的平在各个位置时,是不是都与桌面所在的平面平行?面平行?从中你能得出什么结论?从中你能得出什么结论?A AB BC CD DCD是桌面外一条直线是桌面外一条直线,AB是桌面内一条直是桌面内一条直线,线,CD AB,则,则CD 桌面桌面直线直线AB、CD各有什么特点呢?各有什么特点呢?有什么关系呢?有什么关系呢?猜想猜想:如果平面外一条直线和这个平面内的一:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。条直线平行,那么这条直线和这个平面平行。探究问题,归纳结论探究问题,归纳结论如图,平面如图,平面 外的直线外的直线 平行于平面平行
3、于平面 内的直线内的直线b。(1)这两条直线共面吗?)这两条直线共面吗?(2)直线)直线 与平面与平面 相交吗?相交吗?b直线与平面平行的判定定理直线与平面平行的判定定理:符号表示:符号表示:b归纳结论归纳结论(线线平行线面平行)平面外的一条直线与此平面内的一条直平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行线平行,则该直线与此平面平行 .感受校园生活中线面平行的例子感受校园生活中线面平行的例子:天花板平面天花板平面感受校园生活中线面平行的例子感受校园生活中线面平行的例子:球场地面球场地面定理的应用定理的应用 例例1.如图,空间四边形如图,空间四边形ABCD中,中,E、F分别是
4、分别是 AB,AD的中点的中点.求证:求证:EF平面平面BCD.ABCDEF 分析:要证明线面平行只需证明线线平行,分析:要证明线面平行只需证明线线平行,即在平面即在平面BCD内找一条直线内找一条直线 平行于平行于EF,由已,由已知的条件怎样找这条直线?知的条件怎样找这条直线?证明:连结证明:连结BD.BD.AE=EB,AF=FD AE=EB,AF=FD EFBD EFBD(三角形中位线性质)(三角形中位线性质)例例1.如图,空间四边形如图,空间四边形ABCD中,中,E、F分别是分别是 AB,AD的中点的中点.求证:求证:EF平面平面BCD.ABDEF定理的应用定理的应用1.如图,在空间四边形
5、如图,在空间四边形ABCD中,中,E、F分分别为别为AB、AD上的点,若上的点,若 ,则,则EF与平面与平面BCD的位置关系是的位置关系是_.EF/平面平面BCD变式变式1:1:ABCDEF变式变式2:ABCDFOE 2.如图如图,四棱锥四棱锥ADBCE中中,O为底面正方形为底面正方形DBCE对角线的交点对角线的交点,F为为AE的中点的中点.求证求证:AB/平面平面DCF.(04年天津高考年天津高考)分析分析:连结连结OF,可知可知OF为为ABE的中位线的中位线,所以得到所以得到AB/OF.O为正方形为正方形DBCE 对角线的交点对角线的交点,BO=OE,又又AF=FE,AB/OF,BDFO
6、2.如图如图,四棱锥四棱锥ADBCE中中,O为底面正方形为底面正方形DBCE对角线的交点对角线的交点,F为为AE的中点的中点.求证求证:AB/平面平面DCF.证明证明:连结连结OF,ACE变式变式2:1.线面平行线面平行,通常可以转化为通常可以转化为线线平行线线平行来处理来处理.反思反思领悟:领悟:2.寻找平行直线可以通过寻找平行直线可以通过三角形的中位线、三角形的中位线、梯形的中位线、平行线的判定梯形的中位线、平行线的判定等来完成。等来完成。3、证明的书写三个条件、证明的书写三个条件“内内”、“外外”、“平平行行”,缺一不可。,缺一不可。A再练一练再练一练再练一练再练一练D1C1B1A1DC
7、BA1.如图如图,长方体长方体ABCD-A1B1C1D1中中,与与AA1平平行行的平面是的平面是_.巩固练习巩固练习:平面平面1、平面、平面CD1 分析:分析:要证要证BD1/平面平面AEC即要在平面即要在平面AEC内找内找一条直线与一条直线与BD1平行平行.根据根据已知条件应该怎样考虑辅已知条件应该怎样考虑辅助线助线?巩固练习巩固练习:2.如图如图,正方体正方体ABCD-A1B1C1D1中,中,E为为DD1的中的中点,求证点,求证:BD1/平面平面AEC.ED1C1B1A1DCBAO 证明证明:连结连结BD交交AC于于O,连结连结EO.O 为矩形为矩形ABCD对角线的交点对角线的交点,DO=
8、OB,又又DE=ED1,BD1/EO.ED1C1B1A1DCBAO巩固练习巩固练习:如图如图,正方体正方体ABCD-A1B1C1D1中,中,E为为DD1的中点,的中点,求证求证:BD1/平面平面AEC.归纳小结,理清知识体系归纳小结,理清知识体系1.判定直线与平面平行的方法:判定直线与平面平行的方法:(1)定义法:直线与平面没有公共点则线面平行;)定义法:直线与平面没有公共点则线面平行;(2)判定定理:()判定定理:(线线平行线线平行 线面平行线面平行););2.用定理证明线面平行时用定理证明线面平行时,在寻找平行直线可在寻找平行直线可以通过以通过三角形的中位线、梯形的中位线、平三角形的中位线、梯形的中位线、平行线的判定行线的判定等来完成。等来完成。作业作业:课本课本P P6868第第3 3题题