《统计学 假设检验.pptx》由会员分享,可在线阅读,更多相关《统计学 假设检验.pptx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、正常人的平均体温是3737o oC C吗?当问起健康的成年人体温是多少时,多数人的回答 是 3737o oC C,这 似乎已经成了一种共识。右边是一个研究人员测量的5050个健康成年人的体温数据 37.137.136.936.936.936.937.137.136.436.436.936.936.636.636.236.236.736.736.936.937.637.636.736.737.337.336.936.936.436.436.136.137.137.136.636.636.536.536.736.737.137.136.236.236.336.337.537.536.936.937
2、.037.036.736.736.936.937.037.037.137.136.636.637.237.236.436.436.636.637.337.336.136.137.137.137.037.036.636.636.936.936.736.737.237.236.336.337.137.136.736.736.836.837.037.037.037.036.136.137.037.0第1页/共34页正常人的平均体温是3737o oC C吗?根据样本数据计算的平均值是36.8oC,标准差为0.36oC 根据参数估计方法得到的健康成年人平均体温的95%的置信区间为(36.7,36.9)。
3、因此提出“不应该以37oC作为衡量人的正常体温的标准”我们应该放弃“正常人的平均体温是37oC”这个共识吗?第2页/共34页假设检验的基本知识假假设设检检验验:先对总体的参数提出某种假设,然后利用样本信息判断假设是否成立的统计方法。假设检验的步骤假设检验的步骤:1.1.1.1.提出原假设和备择假设提出原假设和备择假设 2.2.2.2.确定适当的检验统计量确定适当的检验统计量 3.3.3.3.规定显著性水平规定显著性水平 4.4.4.4.计算检验统计量的值计算检验统计量的值 5.5.5.5.做出统计决策做出统计决策第3页/共34页1.1.提出原假设和备择假设原原假假设设(H(H0 0):需要通过
4、样本去推断其正确与否的命题 H H0 0:备择假设备择假设(H(H1 1):与原假设相对立的假设。原假设和备择假设是互斥的原假设和备择假设是互斥的第4页/共34页假设假设研究的问题研究的问题双侧检验双侧检验左侧检验左侧检验右侧检验右侧检验H H0 0 =0 0 0 0 0 0H H1 1 0 0 0 0第5页/共34页【例】20102010年某地新生儿的平均体重为31903190克,现从20112011年的新生儿中随机抽取100100个,测得其平均体重为32103210克,问20112011年的新生儿与20102010年相比,体重有无显著差异。H H0 0:=3190=3190(克)H H1
5、1:31903190(克)2011年新生儿的体重 与2010年无显著差异 2011年新生儿的体重 与2010年有显著差异第6页/共34页【例】某品牌的洗涤剂在其产品说明书中声称:每瓶的“平均净含量不低于500克”。从消费者的利益出发,有关研究人员要通过抽检其中的一批产品来验证该产品制造商的说明是否属实。试陈述原假设和备择假设。H H0 0:500 500 (净含量符合说明书)H H1 1:500500 (净含量不符合说明书)第7页/共34页【例】某种大量生产的袋装食品,按规定重量不得少于250250克。今从一批该种食品中随机抽取5050袋,发现有6 6袋重量低于250250克。若规定不符合标准
6、的比例超过5%5%,食品就不得出厂,则该批食品能否出厂?H H0 0:5%5%(次品率没有超过上限,可以出厂)H H1 1:5%5%(次品率超过上限,不可以出厂)第8页/共34页2.2.检验统计量的确定样本量Z Z统计量总体标准差Z Z统计量t t统计量大Z统计量小已知未知第9页/共34页3.3.规定显著性水平 显著性水平显著性水平:当原假设正确而人们却把它拒绝了的概率或风险。用表示常用的值有0.01,0.050.01,0.05假设检验中的两类错误假设检验中的两类错误 错误(弃真错误):原假设为真却被拒绝。错误(取伪错误):原假设为伪却被接受。第10页/共34页H H0 0:无罪无罪法官审判法
7、官审判裁决裁决实际情况实际情况无罪无罪有罪有罪无罪无罪正确正确错误错误有罪有罪错误错误正确正确H0 检验检验决策决策实际情况实际情况H0为真为真H0为假为假不能拒不能拒绝绝H01-(正确决策)(正确决策)b b(取伪错误(取伪错误)拒绝拒绝H0(弃真错误弃真错误)1-1-b b(正确决策)正确决策)假设检验就好像假设检验就好像假设检验就好像一场审判过程一场审判过程一场审判过程统计检验过程统计检验过程统计检验过程第11页/共34页小概率原理小概率原理小概率原理:发生概率很小的随机事件在一次试验中是几乎不会发生的。假设检验的基本思想:在一次试验中小概率事件:在一次试验中小概率事件一旦发生,我们就有
8、理由拒绝原假设。一旦发生,我们就有理由拒绝原假设。第12页/共34页4.4.计算检验统计量的值Z Z统计量:t t统计量:或第13页/共34页5.5.作出统计决策 根据给定的显著性水平和统计量的分布,查表得出相应的临界值。将检验统计量的值与临界值进行比较 得出接受或拒绝原假设的结论双侧检验:左侧检验:右侧检验:第14页/共34页双侧检验的算例【例】某机床厂加工一种零件,根据经验知道,该厂加工零件的椭圆度近似服从正态分布,其总体均值为 0 0=0.081mm=0.081mm,总体标准差为0.025mm0.025mm。今换一种新机床进行加工,抽取n n=200=200个零件进行检验,得到的椭圆度为
9、0.076mm0.076mm。试问新机床加工零件的椭圆度的均值与以前有无显著差异?(0.050.05)第15页/共34页检验统计量检验统计量:统计决策统计决策:,Z Z Z Z值位于拒绝域,值位于拒绝域,所所以以拒拒绝绝H H H H0 0 0 0,可可以以认认为为新新机机床床加加工工的的零零件的椭圆度与老机床有显著差异件的椭圆度与老机床有显著差异H H0 0:=0.081mm =0.081mm 没有明显差异H H1 1:0.081mm 0.081mm 有显著差异已知0 0=0.081mm=0.081mm,=0.025mm=0.025mm,n=200n=200,因为是大样本,故选择Z Z统计量
10、 =0.05=0.05,z z0.0250.025=1.96=1.96解:因为第16页/共34页【例】根据以往经验,某公司销售人员的销售额近似服从正态分布,他们的月平均销售额为1515万元,标准差为2 2万元。公司又召进来3636名新销售员,随机抽取他们某一个月的平均销售额,为1212万元,试问新员工的月平均销售额与老员工有无显著差异?(0.050.05)第17页/共34页检验统计量检验统计量:统计决策统计决策:,Z Z Z Z值位于拒绝域,值位于拒绝域,所所以以拒拒绝绝H H H H0 0 0 0,新新员员工工的的月月平平均均销销售售额额与与老员工相比有显著差异。老员工相比有显著差异。H H
11、0 0:=15=15万元 没有明显差异H H1 1:15 15万元 有显著差异已知0 0=15=15万元,=2=2万元,n=36n=36,因为是大样本,故选择Z Z统计量 =0.05=0.05,z z0.0250.025=1.96=1.96解:因为第18页/共34页【例】一项对200200个家庭的调查显示,每个家庭每天看电视的平均时间为7.257.25小时,标准差为2.52.5小时。据统计,去年每天每个家庭看电视的平均时间为7 7小时。取显著性水平=0.01=0.01,试证明今年每个家庭每天看电视的平均时间与去年相比是否有显著差异?第19页/共34页左侧检验的算例【例】某批发商欲从厂家购进一批
12、打印墨盒,根据合同规定用这批墨盒打印的纸张数目平均不能低于1000张。已知其墨盒的打印纸张数量服从正态分布,标准差为200张。在总体中随机抽取了100件墨盒,试验发现平均打印的纸张数量为960张,当显著性水平=0.05时,批发商是否应该购买这批墨盒?第20页/共34页检验统计量检验统计量:统计决策统计决策:,Z Z Z Z值位于拒绝域,值位于拒绝域,所以应拒绝所以应拒绝H H H H0 0 0 0,检验表明这批墨盒的使用寿命检验表明这批墨盒的使用寿命低于低于10001000张,批发商不应购买这批墨盒。张,批发商不应购买这批墨盒。H0:H0:10001000张 应购买墨盒H1:H1:100010
13、00张 拒绝购买墨盒已知0 0=1000(=1000(张),=200(=200(张),n=100n=100,因为是大样本,故选择Z Z统计量 =0.05=0.05,本题为左侧检验,因此z z=1.645=1.645解:因为第21页/共34页右侧检验【例】电视机显像管批量生产的质量标准为平均使用寿命12001200小时,标准差为300300小时。某电视机厂宣称其生产的显像管质量大大超过规定标准。为了进行验证,随机抽取了100100件为样本,测得平均使用寿命为12451245小时。能否说该厂的显像管质量显著高于规定标准?(=0.05)=0.05)第22页/共34页解:H H0 0:1200 120
14、0 质量没有显著超过标准H H1 1:1200 1200 质量显著超过标准已知n=100n=100,=300=300,故采用Z Z统计量验证。本题为右侧检验,=0.05=0.05,Z Z=1.645=1.645因为ZZZZZZ,Z Z值落在拒绝域中,所以拒绝原假设,即不能说该批食品不能出厂。第32页/共34页 对消费者的一项调查表明,17%的人早餐饮料是牛奶。某城市的牛奶生产商认为,该城市的人早餐饮用牛奶的比例更高。为验证这一说法,生产商随机抽取由250人组成的一个随机样本,其中60人早餐饮用牛奶。在=0.05显著性水平下,检验该生产商的说法是否属实?第33页/共34页感谢您的观看!第34页/共34页