《统计学假设检验12.pptx》由会员分享,可在线阅读,更多相关《统计学假设检验12.pptx(71页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、随机原则总体参数统计量推断估计参数估计检验假设检验抽样分布第1页/共71页假设检验在统计方法中的地位:假设检验在统计方法中的地位:统计方法描述统计法推断统计法参数估计假设检验第2页/共71页正常人的平均体温是37oC吗?当问起健康的成年人体温是多少时,多数人的回答是37oC!这似乎已经成了一种共识以下是一位研究人员测量的50个健康成年人的体温数据。37.136.936.937.136.436.936.636.236.736.937.636.737.336.936.436.137.136.636.536.737.136.236.337.536.937.036.736.937.037.136.63
2、7.236.436.637.336.137.137.036.636.936.737.236.337.136.736.837.037.036.137.0第3页/共71页 根据样本数据,计算的平均值平均值为36.8oC,标准差标准差为0.36oC 根据参数估计参数估计方法,健康成年人平均体温的95%的置信区间为(36.7,36.9)研究人员发现这个区间内并没有包括37oC!因此,提出了“不应该再把不应该再把37oC作为正常人体温的作为正常人体温的一个有任何特定意义的概念一个有任何特定意义的概念”我们应该放弃“正常人的平均体温是37oC”这个共识吗?第4页/共71页1 先对总体参数(或分布形式)提出
3、某种假设,再利用样本信息判断假设是否成立2参数检验总体的分布形式已知;非参数检验3逻辑上运用反证法,统计上依据小概率原理!小概率是在一次试验中,一个几乎不可能发生的事件发生的概率;在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设拒绝原假设 一、假设检验的基本原理一、假设检验的基本原理1.假设检验(假设检验(hypothesis test)第5页/共71页2.2.假设检验的基本思想假设检验的基本思想 因此,我们因此,我们拒绝假设拒绝假设 =50!=50!如果这是总体如果这是总体的真实均值的真实均值样本均值样本均值 =50 =50抽样分布抽样分布抽样分布抽样分布HH00 这个值不像我们应这个
4、值不像我们应该得到的样本均值该得到的样本均值 .2020第6页/共71页总体总体3.3.假设检验的过程假设检验的过程(提出假设(提出假设抽取样本抽取样本作出决策)作出决策)抽取随机样本均值均值均值均值 X =20=20我认为人口的平均年龄是50岁提出假设 拒绝假设!作出决策第7页/共71页二、假设检验的步骤1.提出原假设和备择假设2.确定适当的检验统计量3.规定显著性水平4.计算检验统计量的值5.作出统计决策第8页/共71页1.提出假设提出假设1原假设(null hypothesis)研究者收集证据,指的是待检验的假设,用H H0 0表示 统计学涵义是指参数没有变化或变量之间没有参数没有变化或
5、变量之间没有关系关系 起初被假设是成立的,后面根据样本数据确定是否有足够的证据拒绝它 总是有符号 ,H0:=某一数值H0:某一数值H0:某一数值第9页/共71页 也称“研究假设”,研研究究者者想想收收集集证证据据予予以以支支持持的假设的假设,通常用 H H1 1 表示 统计学涵义是指总总体体参参数数发发生生了了变变化化或或变变量量之之间间有某种关系有某种关系 备择假设用于表达研究者自己倾向于支持的看法,然后收集证据拒绝原假设,以支持备择假设 总是有符号 ,H1:某一数值H1:某一数值H1:某一数值2备择假设(alternative hypothesis)第10页/共71页【例1】一种零件的生产
6、标准直径为直径为10cm10cm,为对生产过程进行控制,质量监测人员定期对一台加工机床检查,来确定这台机床生产的零件是否符合标准要求。若零件的平均直径大于或小于10cm,则表明生产过程不正常生产过程不正常,必须进行调整。试陈述用来检验生产过程是否正常的原假设和备择假设。解解解解:研研究究者者想想收收集集证证据据予予以以证证明明的的假假设设应应该该是是“生生产产过过程程不不正常正常”。建立的建立的原假设原假设和和备择假设备择假设为:为:H H0 0:10cm 10cm H H1 1:10cm 10cm 第11页/共71页【例2】某品牌洗涤剂在它的产品说明书中声称:平平均均净净含含量量不不少少于于
7、500500克克,从消费者的利益出发,有关研究人员要通过抽检其中的一批产品来验验证证该该产产品品制制造造商商的的说说明明是是否否属属实实。试陈述用于检验的原假设与备择假设。解解解解:研研究究者者抽抽检检的的意意图图是是倾倾向向于于证证实实这这种种洗洗涤涤剂剂的的平平均均净含量并不符合说明书中的陈述。净含量并不符合说明书中的陈述。建立的建立的原假设原假设和和备择假设备择假设为:为:H H0 0:500 500 H H1 1:500 500第12页/共71页【例3】一家研究机构估计,某城市中家家庭庭拥拥有有汽汽车车的的比比例例超超过过30%30%。为验证这一估计是否正确,该研究机构随机抽取了一个样
8、本进行检验。试陈述用于检验的原假设与备择假设。解:解:解:解:研究者想收集证据予以支持的假设是研究者想收集证据予以支持的假设是“该城市中家庭拥该城市中家庭拥有汽车的比例超过有汽车的比例超过30%”30%”。建立的建立的原假设原假设和和备择假设备择假设为:为:H H0 0:30%30%H H1 1:30%30%第13页/共71页1原假设和备择假设是一个完备事件组,而且相互对立 2先确定备择假设,再确定原假设 3等号“”总是放在原假设上 提出假设(小结):提出假设(小结):第14页/共71页1用于假设检验假设检验问题的统计量2选择统计量的方法与参数估计相同,需考虑:是大样本 or 小样本 总体方差
9、已知 or 未知2.确定适当的检验统计量第15页/共71页1是一个概率值概率值2原假设为真时,拒绝原假设的概率 3表示为 常用的 值有0.01,0.05,0.103.3.规定规定显著性水平显著性水平(significant level)第16页/共71页1根据样本观测结果,计算出对原假设和备择假设做出决策的某个样本统计量2对样本估计量的标准化结果 原假设H0为真 点估计量的抽样分布 3检验统计量的基本形式为(以正态分布为例):4.检验统计量(test statistic)的计算第17页/共71页5.5.作出统计决策作出统计决策1根据给定的显著性水平,查表得出相应的临界值Z或Z/2,t 或 t/
10、22将检验统计量的值与 水平的临界值进行比较3得出接受或拒绝原假设的结论第18页/共71页1备择假设没没有有特特定定的的方方向向性性,并含有符号“”的假设检验,称为双侧检验或双尾检验(two-tailed test)2备择假设具具有有特特定定的的方方向向性性,并含有符号“”或或“”的假设检验,称为单侧检验或单尾检验(one-tailed test)备择假设的方向为“”,称为右侧检验右侧检验 (1)双侧检验与单侧检验第19页/共71页假设双侧检验双侧检验单侧检验单侧检验左侧检验左侧检验右侧检验右侧检验原假设原假设H0:=0 0H0:0 0H0:0 0备择假设备择假设H1:0 0H1:0 0以总体
11、均值的检验为例:以总体均值的检验为例:假设检验的假设检验的3种形式:种形式:第20页/共71页【例1】一种零件的生产标准直径为直径为10cm10cm,为对生产过程进行控制,质量监测人员定期对一台加工机床检查,来确定这台机床生产的零件是否符合标准要求。若零件的平均直径大于或小于10cm,则表明生产过程不正常生产过程不正常,必须进行调整。试陈述用来检验生产过程是否正常的原假设和备择假设。解解解解:研研究究者者想想收收集集证证据据予予以以证证明明的的假假设设应应该该是是“生生产产过过程程不不正常正常”。建立的建立的原假设原假设和和备择假设备择假设为:为:H H0 0:10cm 10cm H H1 1
12、:10cm 10cm 第21页/共71页抽样分布抽样分布H H0 0临界值临界值临界值临界值临界值临界值临界值临界值 /2/2 /2/2 拒绝拒绝H H0 0拒绝拒绝H H0 01-1-置信水平置信水平Region of RejectionRegion of RejectionRegion ofRegion ofNon rejectionNon rejectionRegion of RejectionRegion of Rejection双侧检验:双侧检验:观察到的样本统计量观察到的样本统计量第22页/共71页抽样分布抽样分布H H0 0临界值临界值临界值临界值临界值临界值临界值临界值 /2/
13、2 /2/2 拒绝拒绝H H0 0拒绝拒绝H H0 01-1-置信水平置信水平Region of RejectionRegion of RejectionRegion ofRegion ofNon rejectionNon rejectionRegion of RejectionRegion of Rejection双侧检验:双侧检验:观察到的样本统计量观察到的样本统计量第23页/共71页抽样分布抽样分布H H0 0临界值临界值临界值临界值临界值临界值临界值临界值 /2/2 /2/2 拒绝拒绝H H0 0拒绝拒绝H H0 01-1-置信水平置信水平Region of RejectionRegi
14、on of RejectionRegion ofRegion ofNon rejectionNon rejectionRegion of RejectionRegion of Rejection双侧检验:双侧检验:观察到的样本统计量观察到的样本统计量第24页/共71页【例2】某品牌洗涤剂在它的产品说明书中声称:平平均均净净含含量量不不少少于于500500克克,从消费者的利益出发,有关研究人员要通过抽检其中的一批产品来验验证证该该产产品品制制造造商商的的说说明明是是否否属属实实。试陈述用于检验的原假设与备择假设。解解解解:研研究究者者抽抽检检的的意意图图是是倾倾向向于于证证实实这这种种洗洗涤涤剂
15、剂的的平平均均净含量并不符合说明书中的陈述。净含量并不符合说明书中的陈述。建立的建立的原假设原假设和和备择假设备择假设为:为:H H0 0:500 500 H H1 1:500 临界值,拒绝H0 左侧检验:统计量 临界值,拒绝H0统计量决策规则:统计量决策规则:第31页/共71页 第一类错误(弃真错误)原假设为真时,拒绝原假设 会产生一系列后果 第一类错误的概率为,被称为显著性水平 第二类错误(取伪错误)原假设为假时,接受原假设 第二类错误的概率为(2)假设检验中的两类错误)假设检验中的两类错误假设检验的结果不一定正确!第32页/共71页0 x原假设抽样分布0原假设抽样分布x拒绝域 弃真错误:
16、原假设为真,却落在拒绝域内被拒绝。扩扩大大拒拒绝绝域域(变变大大),第第一一类类错错误误可可能能性性变变大大;反反之之,为为防止弃真错误,就要缩小防止弃真错误,就要缩小。拒绝域第一类错误(弃真错误)接受域(原假设为真)第33页/共71页原假设:1-0接受域接受域拒绝域拒绝域备择假设:1-1拒绝域拒绝域接受域接受域第34页/共71页 研究者总是希望能做出正确的决策,但由于决策是建立在样本信息样本信息的基础之上,而样本又是随机的,因而就有可能犯错误有可能犯错误;原假设和备择假设不能同时成立,决策的结果要么拒绝H0,要么不拒绝H0。决策时总是希望当原假设正确时,没有拒绝它;当原假设不正确时拒绝它,但
17、实际上很难保证不犯错误 第35页/共71页H H0 0 :无罪:无罪假设检验中的两类错误(决策结果)陪审团审判裁决实际情况无罪有罪无罪正确错误有罪错误正确H0 检验决策实际情况H0为真为真H0为假为假接受H0正确决策正确决策1 第二类错误()拒绝H0第一类错误()正确决策正确决策(1-(1-)假设检验就好像假设检验就好像一场审判过程一场审判过程统计检验过程统计检验过程是针对原假设是针对原假设H H0 0 说的!说的!冤枉好人冤枉好人放过坏人放过坏人第36页/共71页 对于一个给定的样本,如果犯第一类错误的代价比犯第二类错误的代价相对较高,则将犯第类错误的概率定得低些较为合理;反之,则将犯第类错
18、误的概率定得高些;一般来说,发生哪一类错误的后果更为严重,就应该首要控制哪类错误发生的概率。由于犯第一类错误的概率是可以由研究者控制的,因此在假设检验中,人们往往先控制第一类错误的发生概率两类错误的控制:两类错误的控制:第37页/共71页 错误和错误和 错误的关系:错误的关系:你不能同时减少两类错误!和和 的关系就的关系就像翘翘板,像翘翘板,小小 就就大,大,大大 就小就小第38页/共71页两类错误与显著性水平:第一类错误:弃真(显著水平)第二类错误:取伪显著显著水平水平与两类两类错误错误生活中如何避免弃真错误控制得小一些!第39页/共71页 传统上,做出决策所依据的是样本统计量,现代检验中人
19、们直接使用由统计量算出的犯第一类错误的概率,即所谓的P P值。第40页/共71页注:假设检验不能证明原假设正确。假设检验只提供不利于原假设的证据。当拒绝原假设时,表明样本提供的证据证明它是错误的;当没有拒绝原假设时,我们也不说“接受原假设”,因为没法证明原假设是正确的 这与法庭上对被告的定罪类似:先假定被告是无罪的,直到你有足够的证据证明他是有罪的,否则法庭就不能认定被告有罪。当证据不足时,法庭的裁决是“被告无罪”,这里也没有证明被告就是清白的 如果你主观上要想拒绝原假设,那就一定能拒绝它 这类似于我们通常所说的“欲加之罪,何患无词”只要你无限制扩大样本容量,几乎总能拒绝原假设第41页/共71
20、页1用于假设检验假设检验问题的统计量2选择统计量的方法与参数估计相同,需考虑:是大样本 or 小样本 总体方差已知 or 未知回顾上节课以下内容2.确定适当的检验统计量第42页/共71页1是一个概率值概率值2原假设为真时,拒绝原假设的概率 3表示为 常用的 值有0.01,0.05,0.103.3.规定规定显著性水平显著性水平(significant level)第43页/共71页1根据样本观测结果,计算出对原假设和备择假设做出决策的某个样本统计量2对样本估计量的标准化结果 原假设H0为真 点估计量的抽样分布 3检验统计量的基本形式为(以正态分布为例):4.检验统计量(test statisti
21、c)的计算第44页/共71页5.5.作出统计决策作出统计决策1根据给定的显著性水平,查表得出相应的临界值Z或Z/2,t 或 t/22将检验统计量的值与 水平的临界值进行比较3得出拒绝或不拒绝原假设的结论第45页/共71页1.总体均值的检验(大样本)1假定条件:总体服从正态分布正态分布;总体为非正态分布非正态分布或总总体分布未知体分布未知,可近似为正态分布(n 30)2使用z 检验统计量 2 已知:2 未知:三、总体均值的检验三、总体均值的检验 第46页/共71页【例1】一种罐装饮料采用自动生产线生产,每罐的容量是255ml,标准差为5ml。为检验每罐容量是否符合要求,质检人员在某天生产的饮料中
22、随机抽取了40罐进行检验,测得每罐平均容量为255.8ml。取显著性水平=0.05,检验该天生产的饮料容量是否符合标准要求?双侧检验双侧检验第47页/共71页H0:=255H1:255检验统计量:统计决策:没有证据表明该天生产的饮料不符合标准要求 z01.96-1.960.025拒绝 H0拒绝 H00.025观察到的样本统计量观察到的样本统计量 =0.05n=40第48页/共71页 【例2】某一小麦品种的平均产量为5200kg/hm2。一家研究机构对小麦品种进行了改良以期提高产量。为检验改良后的新品种产量是否有显著提高,随机抽取了36个地 块 进 行 试 种,得 到 的 样 本 平 均 产 量
23、 为5275kg/hm2,标准差为120/hm2。试检验改良后的新品种产量是否有显著提高?(=0.05)右侧检验右侧检验2.2.总体均值的检验总体均值的检验(2 未知、大样本)未知、大样本)第49页/共71页H0:5200H1:5200检验统计量:拒绝H0,改良后的新品种产量有显著提高 统计决策:=0.05n=36拒绝 H01.645z0.050观察到的样本统计量观察到的样本统计量第50页/共71页【例例3 3】一种机床加工的零件尺寸绝对平均误差为1.35mm。生产厂家现采用一种新的机床进行加工以期进一步降低误差。为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件中随机
24、抽取50个进行检验。利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低?(=0.01)左侧检验左侧检验50个零件尺寸的误差数据(mm)1.261.191.310.971.811.130.961.061.000.940.981.101.121.031.161.121.120.951.021.131.230.741.500.500.590.991.451.241.012.031.981.970.911.221.061.111.541.081.101.641.702.371.381.601.261.171.121.230.820.86第51页/共71页H0:1.35H1:
25、1.35检验统计量:拒绝H0,新机床加工的零件尺寸的平均误差与旧机床相比有显著降低统计决策:-2.33z0 0拒绝H00.01 =0.01n=50观察到的样本统计量观察到的样本统计量第52页/共71页1假定条件:总体服从正态分布;小样本(n 30)2检验统计量:2 已知:2 未知:3.3.总体均值的检验总体均值的检验(小样本)(小样本)第53页/共71页 【例例4 4】一种汽车配件的平均长度要求为12cm,高于或低于该标准均被认为是不合格的。汽车生产企业在购进配件时,通常是经过招标,然后对中标的配件提供商提供的样品进行检验,以决定是否购进。现对一个配件提供商提供的10个样本进行了检验。假定该供
26、货商生产的配件长度服从正正态态分分布布,在0.05的显著性水平下,检验该供货商提供的配件是否符合要求?10个零件尺寸的长度个零件尺寸的长度(cm)12.210.812.011.811.912.411.312.212.012.3第54页/共71页检验统计量:不拒绝H0,没有证据表明该供货商提供的零件不符合要求 统计决策:t02.262-2.2620.025拒绝 H0拒绝 H0H0:=12H1:12 =0.05n=100.025观察到的样本统计量观察到的样本统计量第55页/共71页 是否已知小小样本量n大大 是否已知否否 t 检验否否z 检验是是z 检验 是是z 检验一个总体均值的检验(小结)一个
27、总体均值的检验(小结)第56页/共71页四、利用 p 值进行假设检验 有了P 值,我们并不需要用1%、5%、10%这类传统的显著性水平。P 值提供了更多的信息,它让我们可以选择任意水平来评估结果是否具有统计上的显著性,从而可根据我们的需要来决定是否要拒绝原假设用p值作决策用统计量作决策第57页/共71页 统计量检验是我们事先给出的一个显著性水平,以此为标准进行决策,无法知道实际的显著性水平究竟是多少。比如,根据统计量进行检验时,只要统计量的值落在拒绝域,我们拒绝原假设得出的结论都是一样的,即结果显著;然而,统计量落在临界值附近与落在远离临界值的地方,实际的显著性有较大差异,而P 值给出的是实际
28、算出的显著水平,它告诉我们实际的显著性水平是多少。P 值决策与统计量的比较:第58页/共71页拒绝拒绝H0拒绝拒绝H H0 0的两个统计量的不同显著性的两个统计量的不同显著性 Z拒绝拒绝H00 0统计量统计量统计量1 11 P PP1 11 值值值统计量统计量统计量2 22 P P2 2 值值拒绝拒绝H0临界值临界值临界值P 值决策与统计量的比较:值决策与统计量的比较:第59页/共71页拒绝原假设时,称样本结果是统计上显著的;统计上显著的;不拒绝原假设时,称样本结果是统计上不显著的统计上不显著的 “显著”和“不显著”之间没有清楚的界限,统计决策时,P 值越小,我们就有越强的证据拒绝H0,检验的
29、结果也就越显著 得到的样本概率(P)很小,则拒绝原假设 P 值越小,你拒绝原假设的理由就越充分第60页/共71页 要检验全校学生的平均生活费支出是否等于500元 提出假设:H0:=500 H0:500 若抽出的样本均值为600元,得得到到的的P 值值=0.02(这个0.02是指如果平均生活费支出真的是500元,那么,从该总体中抽出一个均值为600的样本的概率仅为0.02)如果你认为这个概率太小了,就可以拒绝原假设,因为如果原假设正确的话,几乎不可能抓到这样的一个样本,既然抓到了,就表明这样的样本不在少数,所以原假设是不对的。在这么小的概率下竟然得到了这样的一个样本,表明这样的样本经常出现,所以
30、,样本结果是显著的!第61页/共71页【例例1 1】某儿童食品厂生产盒装儿童食品,每盒标准重量为368克。现从某天生产的一批食品中随机抽取25盒进行检查,测得每盒的平均重量为 x=372.5克。企业规定每盒重量的标准差 为15克,确定P 值。(=0.05)368 克某儿童食品厂(1 1)P P 值计算实例值计算实例双侧检验双侧检验 第62页/共71页 样本统计量的样本统计量的Z Z 值值(观察到的)(观察到的)计算的检验统计量为:01.5-1.5Zp值为:P(Z -1.5 或 Z 1.5)第63页/共71页 样本统计量的样本统计量的Z Z 值值(观察到的)(观察到的)01.5-1.5Z Z1/
31、2 p值1/2 p值第64页/共71页 从从Z Z 分布表分布表查找查找1.51.5 样本统计量的样本统计量的Z Z 值值(观察到的)(观察到的)0.066801.5-1.5Z Z1/2 p值1/2 p值第65页/共71页01.5-1.5Z Z1/2 p值=0.06681/2 p值=0.06681/2 =0.0251/2 =0.025拒绝拒绝拒绝拒绝检验统计量未在拒绝区域p=0.0668 /2=0.025,不能拒绝不能拒绝H0第66页/共71页【例例2 2】某儿童食品厂生产盒装儿童食品,每盒标准重量不不低低于于368克。现从某天生产的一批食品中随机抽取25盒进行检查,测得每盒的平均重量为 x=
32、372.5克。企业规定每盒重量的标准差 为15克,确定P 值。(=0.05)368 克某儿童食品厂(2)P P 值计算实例值计算实例单侧检验单侧检验 第67页/共71页 样本统计量的样本统计量的Z Z 值值(观察到的)(观察到的)计算的检验统计量为:01.5Zp值为:P(Z 1.5)第68页/共71页01.5Z Zp值=0.0668=0.05拒绝拒绝检验统计量未在拒绝区域p=0.0668 =0.05,不能拒绝不能拒绝H0第69页/共71页P 值告诉我们:值告诉我们:如果原假设是正确的,我们得到目前这个样本数据的可能性有多大样本数据的可能性有多大,如果这个可能性很小,就应该拒绝原假设 P 值被称为观察到的(或实测的)显著性水平 决策规则:若p 值 ,拒绝 H0 若p 值 /2,拒绝 H0 用用P P 值决策(小结):值决策(小结):第70页/共71页感谢您的观看!第71页/共71页