《理学章相平衡.pptx》由会员分享,可在线阅读,更多相关《理学章相平衡.pptx(181页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、气体:不论有多少种气体混合,只有一个气相。液体,按其互溶程度可以组成一相、两相或三相共存。固体,一般有一种固体便有一个相。两种固体粉末无论混合得多么均匀,仍是两个相(固体溶液除外,它是单相)。如:N2+O2+CO2 (一相)如:铁粉 铜粉(二相)如:冰、盐水系统有两相,2。同种物质不同晶型是不同的相。第1页/共181页(1)热平衡 多相系统平衡的一般条件多相系统平衡的一般条件四个平衡条件四个平衡条件 在一个封闭的多相系统中,相与相之间可以有热的交换、功的传递和物质的交流。(2)力学平衡T =T =T p =p =p 设系统的总体积为V,在系统的温度、体积及组成均不变的条件下,无刚性壁隔开,体系
2、达到平衡时各相的压力相等。设系统有个相,在系统的组成、总体积和热力学能均不变的条件下,达到平衡时,各相具有相同温度。第2页/共181页(3)相平衡(4)化学平衡 设系统有个相,并处于平衡状态。在定温、定压下,任一物质B在各相中的化学势相等(不要求每种物质存在于每个相中)。B =B =B 在达到化学平衡时,反应物的化学势等于生成物的化学势,化学势的代数和可表示为第3页/共181页 物种数物种数 系统中所含的化学物质数(或所含的稳定化学单元数),用S表示。独立组分数 系统中能够说明在各相中分布情况的最少数目的独立物质称为独立组分数,用C表示。物种数与独立组分数的关系 (1)系统中无化学反应发生S=
3、C第4页/共181页 (2)系统中有化学平衡存在如:任意量,任意量,NH4Cl(s)NH3(g)+HCl(g)组分数物种数 化学平衡数C=S-R又如:CO+1/2O2=CO2 (1)H2+1/2O2=H2O (2)CO+H2O=CO2+H2 (3)(2)+(3)=(1)C=3-1=2C=5-2=3独立第5页/共181页如:真空容器中发生如下反应NH4Cl(s)NH3(g)+HCl(g)1 :1 C=3-1-1=1组分数物种数独立化学平衡数独立浓度关系式C =S-R-R(3)在同一相中各物质的浓度有固定关系(除 外)第6页/共181页 对于浓度限制条件R,必须是在同一相中几个物质浓度之间存在的关
4、系,能有一个方程把它们的化学势联系起来。例如:因为 不在同一相中(3)在同一相中各物质的浓度有固定关系第7页/共181页(4)系统的物种数可随我们考虑问题的方法而异,而独立组分数却有客观性,对于给定的系统组分数有确定的数值,是唯一的。例:NaCl和H2O构成系统b:若考虑NaCl、水的电离平衡,a:只考虑相平衡,C=S=2。c:若系统中有固体NaCl,有溶解平衡,Na+,Cl-,H2O,H+,OH-H2O=H+OH-Na+=Cl-,H+=OH-S=5R=1R=2NaCl(s),Na+,Cl-,H2O,H+,OH-NaCl(s)=Na+Cl-,H2O=H+OH-Na+=Cl-,H+=OH-C=6
5、-2-2=2S=6R=2R=2C=5-1-2=2第8页/共181页 自由度(degree of freedom)一个多相系统的相平衡状态(平衡性质)是由系统的强度性质决定的。这些强度变量通常是压力、温度和浓度等。确定系统平衡状态所需要的独立的强度性质数目称为系统的自由度数 f。这些独立变量可在一定的范围内任意变化而不会引起系统相数的增加。f=系统的总变量数-变量之间的制约条件 如果已指定某个强度变量,除该变量以外的其它强度变量数称为条件自由度,用 f*表示。例如:指定了压力指定了压力和温度第9页/共181页 某平衡系统中有 S 种不同的化学物种,有 个相,并假设每一种组分都存在于各相中。需要多
6、少强度变量才能确定系统的状态?系统的总变量数关联式数目相律的推导T,p,x1,x2xs,x1,x2xs,x1,x2xs S+2个 ,个(1)1=1=1,2=2=2,s=s=s(2)S(-1)个个 第10页/共181页(3)若系统中存在 R 个独立的化学反应,有R个化学平衡常数关联式。(4)若在各浓度变量之间还有 R个其它的上述关联式未包括的限制条件。则Gibbs 相律相律的推导第11页/共181页 上述推导假定每一种组分都存在于各相中,而在实际的平衡中往往不是这样。但相律依旧适用,因为:某相中少了一种化学物质,就少一个系统的强度性质数,但在相平衡条件中,也同时少了一个化学势等式,即强度性质间的
7、关系式也随之少一个,故系统的自由度f依然不变。说明T,p,x1,x2xs,x1,x2xs,x1,x2xs 关联式数目(1)1=1=1,2=2=2,s=s=s(2)S+1个个 S(-1)-1 个个 第12页/共181页 对于凝聚系统,压力影响不大,只有温度影响平衡,则相律可表示为 若除温度、压力外,还要考虑其他因素(如磁场、电场、重力场等)的影响,则相律可表示为2:温度,压力 n:除浓度变量外,能影响系统平衡状态的其它强度变量的数目。第13页/共181页相律的意义注意(1)只适用于平衡系统。利用相律来确定一个相平衡系统所需要的独立变量个数。(2)只能求出变量的个数,不能指出是哪个变量。(3)相律
8、公式中的“2”表示T,p两个影响因素。考虑渗透压:f=C-+3 (T,p1,p2)指定T或p:f*=C-+1 T,p都指定:f*=C-第14页/共181页(4)若相律写作f(C2)-,当确定了某一系统的组分数C后,可以确定当系统的自由度最小时(f0),系统具有最多的相数。反之,当系统的相数最小时(=1),自由度最大。例1:确定下列系统的自由度数(1)C(s),O2(g),CO(g),CO2(g)的混合系统;S4,C=2,=2,f2(2)将固体NaHCO3放在一个抽空的密闭容器中,使之部分分解达到下列平衡 2NaHCO3(s)=Na2CO3(s)+CO2(g)+H2O(g)S4,C=2,=3,f
9、1第15页/共181页(3)298K 时,将固体 NaCl 和固体 KNO3溶于水所得的溶液 (5)298K时,蔗糖水溶液与纯水达到渗透平衡C=3,=1,f*3(4)含有 Na+,K+,Cl-,NO3-的水溶液 C=4,=1,f5 R=3S=5C2 C2 2 f*2-2+2 例2:已知 Na2CO3(s)和水可以形成三种固体水合物(Na2CO3H2O,Na2CO37H2O,Na2CO310H2O),求(1)在p下与溶液及冰共存的含水盐最多可能有几种?(2)试说明在30时,可与水蒸汽平衡共存的含水盐最多可以有几种?第16页/共181页(3)298K 时,将固体 NaCl 和固体 KNO3溶于水所
10、得的溶液例2:已知 Na2CO3(s)和水可以形成三种固体水合物(Na2CO3H2O,Na2CO37H2O,Na2CO310H2O),求(1)在p下与溶液及冰共存的含水盐最多可能有几种?(2)试说明在30时,可与水蒸汽平衡共存的含水盐最多可以有几种?C=3,=1,f*3(4)含有 Na+,K+,Cl-,NO3-的水溶液 C=4,=1,f5 R=3S=5C2 第17页/共181页例2:已知 Na2CO3(s)和水可以形成三种固体水合物(Na2CO3H2O,Na2CO37H2O,Na2CO310H2O),求(1)在p下与溶液及冰共存的含水盐最多可能有几种?(2)试说明在30时,可与水蒸汽平衡共存的
11、含水盐最多可以有几种?当指定了压力(p),根据相律 f*=C-+1=3-,即=3-f*相数最多时,自由度最少,f*=0,=3。所以,平衡系统中,除了碳酸钠水溶液和冰这两相外,最多还可以有一种含水盐。(2)题目指定了温度,相律f*=3-,=3-f*,现在系统中有水蒸汽一相,故还可以共存两种含水盐。(1)C=2第18页/共181页5.2 单组分系统的相平衡单组分系统的相平衡双变量系统单变量系统无变量系统 单组分系统的自由度最多为2(温度和压力),当两相平衡时,f1。这说明两相平衡时系统的温度和压力只有一个是独立可变的,亦即两者之间有一定的函数关系。单组分系统的相数与自由度单相当=1两相平衡当=2三
12、相共存当=3C=1 f=1-+2=3-第19页/共181页 单组分系统的两相平衡一般包括物质的气-液平衡,气-固平衡,液-固平衡和固-固平衡。单组分系统两相平衡时温度和压力有怎样的关系?单组分系统的两相平衡Clapeyron方程饱和蒸气压 又称蒸气压。某种液体当只与它的蒸气处于平衡时的蒸气的压力。此时因为只有一种物质存在,所以液体所受的外压与饱和蒸气压相等。饱和蒸气压与液体的种类、温度、外界的压力有关。第20页/共181页 在一定温度和压力下,假设B组分的、两相平衡单组分系统的两相平衡Clapeyron方程 若温度改变dT,则压力改变dp,达新的平衡时因此又因为第21页/共181页单组分系统的
13、两相平衡Clapeyron方程对可逆相变化,有Clapeyron方程 它表明两相平衡时的平衡压力随温度的变化率受焓变和体积变化的影响。此方程适用于纯物质的任意两相平衡。第22页/共181页液-气、固-气两相平衡(并假设气体为理想气体)假定 的值与温度无关,积分得:代入克拉贝龙方程,则Clausius-Clapeyron方程微分形式 或第23页/共181页 利用Clausius-Clapeyron 方程的积分式,可从两个温度下的蒸气压,求摩尔蒸发(升华)焓变。或从一个温度下的蒸汽压和摩尔蒸发(升华)焓,求另一温度下的蒸气压。当缺乏液体的气化热数据时,可用楚顿规则粗略地计算摩尔蒸发焓。适用于分子不
14、缔合的液体。对极性大的液体和沸点在150 K以下的液体不适用。第24页/共181页 固-固和固-液平衡若 Hm、Vm可以当作常数第25页/共181页 外压与蒸气压的关系外压与蒸气压的关系不活泼气体对液体蒸气压的不活泼气体对液体蒸气压的影响影响 蒸气压是液体自身的性质。一定温度下液体与其自身的蒸气达到平衡时的饱和蒸气压pg*就是液体的蒸气压pg,此时液体上除液体的蒸气外别无它物,外压pe=pg*。当液面上有其它惰性气体时,液体的蒸气压会有所改变。=(T,p*g)l =g (T,p*g)(T,pe)l+dl =g+dg (T,pg)dl=dg 而dT=0时,d=Vmdp,则 第26页/共181页
15、外压与蒸气压的关系外压与蒸气压的关系不活泼气体对液体蒸气压的影响不活泼气体对液体蒸气压的影响 可以看出,因VgVl,外压对蒸气压影响很小,一般可以忽略。当需要考虑外压的影响时,假如气相是理想气体,则第27页/共181页 外压与蒸气压的关系外压与蒸气压的关系不活泼气体对液体蒸气压的不活泼气体对液体蒸气压的影响影响 pg*是无惰气时液体的饱和蒸气压,pg是有惰气外压为pe时液体的饱和蒸气压。但改变量很小,当外压改变不大时,常可略去不计。可见,若pe-pg*0,则pg pg*,即,向平衡系统中加入惰性气体,液体的蒸气压增大。第28页/共181页水的相图水的相图 水的相图是根据实验绘制的。单组分系统中
16、最多可有两个自由度,它们是系统的温度和压力,故构作单组分系统的相图只需两个坐标。水冰水蒸气610.62整个相图在通常条件下由三个区、三条线和一个点组成。第29页/共181页有三个单相区三条实线是两个单相区的交界线气、液、固单相区内=1,f=2 在线上,压力与温度只能改变一个,指定了压力,则温度由系统自定,反之亦然。=2,f=1水冰水蒸气610.62 温度和压力独立地有限度地变化不会引起相的改变。第30页/共181页OA是气-液两相平衡线即水的蒸气压曲线 它不能任意延长,终止于临界点A,这时气-液界面消失。临界点:高于临界温度,不能用加压的方法使气体液化 临界温度时,气体与液体的密度相等,气-液
17、界面消失。水冰水蒸气610.62超临界水EAF 以右超临界区第31页/共181页水冰水蒸气610.62OB 是气-固两相平衡线 即冰的升华曲线,理论上可延长至0 K附近。OC 是液-固两相平衡线OC线不能任意延长 当C点延长至压力大于 时,相图变得复杂,有不同结构的冰生成。第32页/共181页 在相同温度下,过冷水的蒸气压大于冰的蒸气压,所以OD线在OB线之上。OD 是AO的延长线 是过冷水和水蒸气的介稳平衡线。过冷水处于不稳定状态,一旦有凝聚中心出现,就立即全部变成冰。水冰水蒸气610.62超临界水第33页/共181页水冰水蒸气610.62超临界水O点 是三相点H2O的三相点温度为273.1
18、6 K,压力为610.62 Pa。气-液-固三相共存 三相点的温度和压力皆由系统自定。1967年,CGPM决定,将热力学温度1 K定义为水的三相点温度的1/273.16第34页/共181页三相点与冰点的区别三相点与冰点的区别 三相点是物质自身的特性,不能加以改变。冰点是在大气压力下,水的气、液、固三相共存冰点温度为大气压力为 时改变外压,水的冰点也随之改变第35页/共181页三相点与冰点的区别三相点与冰点的区别 冰点温度比三相点温度低 是由两种因素造成的:(1)因外压增加,使凝固点下降 ;(2)因水中溶有空气,使凝固点下降 第36页/共181页 三条两相平衡线的斜率均可由Clausius-Cl
19、apeyron方程或Clapeyron方程求得。OA线斜率为正。OB线斜率为正。OC线斜率为负。水冰水蒸气610.62超临界水第37页/共181页水冰水蒸气610.62超临界水 两相平衡线上的任何一点都可能有三种情况。如OA线上的P点:(1)f 点的纯水,保持温度不变,逐步降压 在无限接近于P点之前,气相尚未形成,系统仍为液相。(2)当有气相出现时,气-液两相平衡(3)当液体全变为气体,液体消失第38页/共181页5.3 二组分系统的相图及应用二组分系统的相图及应用理想的二组分液态混合物杠杆规则蒸馏(或精馏)的基本原理非理想的二组分液态混合物部分互溶的双液系不互溶的双液系蒸气蒸馏简单的低共熔二
20、元相图形成化合物的系统液、固相都完全互溶的固溶体固态部分互溶的二组分相图区域熔炼气-固态的平衡图水合物(固)的解离平衡第39页/共181页5.4 单组分系统的相平衡单组分系统的相平衡相点物系点 单相区,物系点与相点重合;两相区中,只有物系点,它对应的两个相的组成由对应的相点表示 表示某个相状态(如相态、组成、温度等)的点称为相点。相图中表示系统总状态的点称为物系点。在T-x图上,物系点可以沿着与温度坐标平行的垂线上、下移动;在水盐相图上,随着含水量的变化,物系点可沿着与组成坐标平行的直线左右移动。第40页/共181页5.5 二组分系统的相图及应用二组分系统的相图及应用 对于二组分系统,C=2,
21、f=4-,至少为1,则 f 最多为3。保持一个变量为常量,从立体图上得到平面截面图。(1)保持温度不变,得 p-x 图 较常用(3)保持组成不变,得 T-p 图 不常用。(2)保持压力不变,得 T-x 图 常用 这三个变量通常是T,p 和组成 x。所以要表示二组分系统状态图,需用三个坐标的立体图表示。第41页/共181页理想的二组分液态混合物理想的二组分液态混合物 完全互溶的双液系完全互溶的双液系 两个纯液体可按任意比例互溶,每个组分都服从Raoult定律,这样的系统称为理想的液体混合物1。p-x 图 如苯和甲苯,正己烷与正庚烷等结构相似的化合物可形成这种系统。第42页/共181页理想的完全互
22、溶双液系理想的完全互溶双液系AB第43页/共181页已知 ,或 ,就可把各液相组成对应的气相组成求出,画在 p-x 图上就得 p-x-y 图。即易挥发的组分在气相中的含量大于液相中的含量,反之亦然。若则第44页/共181页AB液相线气相线第45页/共181页AB液相线气相线 在等温条件下,p-x-y 图分为三个区域。在液相线之上,系统压力高于任一混合物的饱和蒸气压,气相无法存在,是液相区。在气相线之下,系统压力低于任一混合物的饱和蒸气压,液相无法存在,是气相区。在液相线和气相线之间的梭形区内,是气-液两相平衡。第46页/共181页2。T-x 图亦称为沸点-组成图 T-x图在讨论蒸馏时十分有用,
23、因为蒸馏通常在等压下进行。外压为大气压力,当溶液的蒸气压等于外压时,溶液沸腾,这时的温度称为沸点。某组成的蒸气压越高,其沸点越低,反之亦然。T-x图可以从实验数据直接绘制。也可以从已知的p-x图求得。第47页/共181页381K373K365K357K从 p-x 图绘制第48页/共181页从 实验绘制 T-x 图AB定压第49页/共181页混合物起始组成为x1加热到温度为T1液体开始沸腾对应气相组成为x2组成为F的气体冷到E有组成为x1的液体出现E点称为露点将泡点都连起来,就是液相组成线D点称为泡点AB定压将露点都连起来,就是气相组成线第50页/共181页杠杆规则杠杆规则(Lever rule
24、)在T-x图上,由nA和nB混合成的物系的组成为xA 落在DE线上所有物系点的对应的液相和气相组成,都由D点和E点的组成表示。AB定压加热到T1温度,物系点C 落在两相区 DE线称为等温连结线第51页/共181页AB定压 液相和气相的数量借助于力学中的杠杆规则求算 以物系点为支点,支点两边连结线的长度为力矩,计算液相和气相的物质的量或质量这就是杠杆规则,可用于任意两相平衡区或 若已知 可计算气、液相的量 第52页/共181页AB定压 杠杆规则计算公式的推导若已知的是质量分数 第53页/共181页蒸馏(或精馏)的基本原理蒸馏(或精馏)的基本原理简单蒸馏 简单蒸馏只能把双液系中的A和B粗略分开。在
25、A和B的T-x图上,纯A的沸点高于纯B的沸点,一次简单蒸馏,馏出物中B含量会显著增加,剩余液体中A组分会增多。则蒸馏时气相中B组分的含量较高,液相中A组分的含量较高。第54页/共181页蒸馏(或精馏)的基本原理蒸馏(或精馏)的基本原理简单蒸馏第55页/共181页简单蒸馏的T-x-y图混合物起始组成为x1加热到温度为T1对应气相组成为y1沸点升高到T2对应馏出物组成为y2一次简单蒸馏接收在T1到T2间的馏出物馏出物组成从y1 到y2剩余物组成为x2第56页/共181页蒸馏(或精馏)原理蒸馏(或精馏)原理精馏 精馏是多次简单蒸馏的组合。精馏塔有多种类型,如图所示是早期用的泡罩式塔板状精馏塔的示意图
26、。精馏塔底部是加热区,温度最高;塔顶温度最低。精馏结果,塔顶冷凝收集的是纯低沸点组分,纯高沸点组分则留在塔底第57页/共181页蒸馏(或精馏)原理第58页/共181页精馏从塔的中间O点进料B的液、气相组成分别为 x3 和 y3越往塔底温度越高,含高沸点物质递增越往塔顶温度越低,含低沸点物质递增每层塔板都经历部分汽化和部分冷凝过程第59页/共181页非理想的二组分液态混合物非理想的二组分液态混合物(1)对Raoult 定律发生偏差发生偏差的原因可能有:2。A,B分子混合时部分形成化合物,分子数减少,使蒸气压下降,发生负偏差 1。某一组分A本身有缔合现象,与B组分混合时缔合分子解离,分子数增加,蒸
27、气压也增加,发生正偏差 3。A,B分子混合时,由于分子间的引力不同,发生相互作用,使体积改变或相互作用力改变,都会造成某一组分对Raoult 定律发生偏差,这偏差可正可负。第60页/共181页等温气液液气(1)对Raoult 定律发生正偏差第61页/共181页等温气液液气 如图所示,是对Raoult定律发生正偏差 虚线为理论值,实线为实验值。真实的蒸气压大于理论计算值。液相组成线不再是直线第62页/共181页(2)正偏差很大,在 p-x 图上有最高点第63页/共181页(2)正偏差很大,在 p-x 图上有最高点 由于A,B二组分对Raoult定律的正偏差很大,在p-x图上形成最高点 在p-x图
28、上有最高点者,在T-x图上就有最低点,这最低点称为最低恒沸点 处在最低恒沸点时的混合物称为最低恒沸混合物第64页/共181页(2)正偏差很大,在 p-x 图上有最高点 最低恒沸混合物是混合物而不是化合物,它的组成在定压下有定值。在标准压力下,的最低恒沸点温度为351.28 K,含乙醇 95.57。改变压力,最低恒沸点的温度也改变,它的组成也随之改变。属于此类的系统有:精馏结果只能得到纯A(或纯B)和恒沸混合物。第65页/共181页(3)负偏差在p-x图上有最低点第66页/共181页(3)负偏差在p-x图上有最低点 在T-x(y)图上,处在最高恒沸点时的混合物称为最高恒沸混合物属于此类的系统有:
29、它是混合物而不是化合物,其组成在定压下有定值。改变压力,最高恒沸点的温度及组成也随之改变。标准压力下,的最高恒沸点为381.65 K,含HCl 20.24,分析上常用来作为标准溶液。第67页/共181页部分互溶的双液系部分互溶的双液系(1)具有最高会溶温度 系统在常温下只能部分互溶,达溶解平衡时分为两层。B点温度称为最高会溶温度,高于这个温度,水和苯胺可无限混溶。下层是水中饱和了苯胺,上层是苯胺中饱和了水,升高温度,彼此的溶解度都增加。升温到达B点,界面消失,成为单一液相。第68页/共181页质量分数等压T/K单相两相第69页/共181页质量分数等压T/K单相两相(1)具有最高会溶温度D点:苯
30、胺在水中的饱和溶解度E点:水在苯胺中的饱和溶解度温度升高,互溶程度增加B点水与苯胺完全互溶帽形区内两相共存 是最高会溶温度第70页/共181页质量分数等压T/K单相两相(1)具有最高会溶温度在 温度作水平线交点 称为共轭配对点 是共轭层组成的平均值BC 是平均值的连线,不一定是垂直线DB线是苯胺在水中的溶解度曲线EB线是水在苯胺中的溶解度曲线第71页/共181页 在 (约为291.2K)以下,两者可以任意比例互溶,升高温度,互溶度下降,出现分层。部分互溶的双液系(2)具有最低会溶温度 水-三乙基胺的溶解度图如图所示。以下是单一液相区,以上是两相区。质量分数T/K单相水三乙基胺水-三乙基胺的溶解
31、度图等压两相B第72页/共181页(3)同时具有最高、最低会溶温度水和烟碱的溶解度图:在最低会溶温度 (约334 K)以下和在最高会溶温度 (约481K)以上,两液体完全互溶。在这两个温度之间只能部分互溶,形成一个完全封闭的溶度曲线,曲线之内是两液相共存区。质量分数T/K单相水烟碱水-烟碱的溶解度图等压两相第73页/共181页部分互溶的双液系部分互溶的双液系(4)不具有会溶温度 一对液体在它们存在的温度范围内,不论以何种比例混合,一直是彼此部分互溶,不具有会溶温度。乙醚与水组成的双液系,在它们能以液相存在的温度区间内,一直是彼此部分互溶,不具有会溶温度。第74页/共181页不互溶的双液系不互溶
32、的双液系蒸汽蒸馏蒸汽蒸馏不互溶双液系的特点 如果A,B 两种液体彼此互溶程度极小,以致可忽略不计。则A与B共存时,各组分的蒸气压与单独存在时一样。当两种液体共存时,不管其相对数量如何,其总蒸气压恒大于任一组分的蒸气压,而沸点则恒低于任一组分的沸点。液面上的总蒸气压等于两纯组分饱和蒸气压之和,即第75页/共181页蒸 汽 蒸 馏 以水-溴苯系统为例,两者互溶程度极小,而密度相差极大,很容易分开。由此可见,在溴苯中通入水气后,双液系的沸点比两个纯物的沸点都低,很容易蒸馏。在101.325 kPa时,水的沸点为373.15 K溴苯的沸点为429 K水和溴苯混合时的沸点为 368.15 K 由于溴苯的
33、摩尔质量大,蒸出的混合物中溴苯含量并不低。第76页/共181页水溴苯水+溴苯两种互不相溶液体水-溴苯的蒸气压第77页/共181页馏出物中两组分(A为水)的质量比计算如下:虽然 小,但 大,所以 也不会太小。蒸 汽 蒸 馏第78页/共181页简单的低共熔二元相图简单的低共熔二元相图1.热分析法基本原理:二组分系统 C=2,指定压力不变,双变量系统单变量系统无变量系统f*=C+1-=3-=1=2=3f*=2f*=1f*=0第79页/共181页 首先将二组分固相系统加热熔化,记录冷却过程中温度随时间的变化曲线,即步冷曲线 当系统有新相凝聚,放出相变热,步冷曲线的斜率变小出现转折点出现水平线段 据此在
34、T-x图上标出对应的位置,得到二组分低共熔T-x图1.热分析法第80页/共181页Cd-Bi二元相图的绘制t/s第81页/共181页Cd-Bi二元相图的绘制纯Bi的步冷曲线1.加热到a点,Bi全部熔化2.冷至A点,固体Bi开始析出温度可以下降温度不能改变,为Bi熔点3.全部变为固体Bi后温度又可以下降纯Cd步冷曲线与之相同第82页/共181页Cd-Bi二元相图的绘制1.加热到b点,Bi-Cd全部熔化2.冷至C点,固体Bi开始析出温度可以下降,组成也可变温度可以下降3.D点固体Bi、Cd同时析出温度不能改变的步冷曲线4.熔液消失,Bi和Cd共存温度又可下降第83页/共181页Cd-Bi二元相图的
35、绘制1.加热到c点,Bi、Cd全部熔化2.冷至E点,Bi和Cd同时析出温度可以下降,组成也可变温度不能改变的步冷曲线3.熔液消失,Bi和Cd共存温度又可下降第84页/共181页Cd-Bi二元相图的绘制4完成Bi-Cd T-x相图 连接A,C,E点,得到Bi(s)与熔液两相共存的液相组成线 连接H,F,E点,得到Cd(s)与熔液两相共存的液相组成线 连接D,E,G点,得到Bi(s),Cd(s)与熔液共存的三相线;熔液的组成由E点表示。这样就得到了Bi-Cd的T-x图。第85页/共181页Cd-Bi二元相图的绘制 图上有4个相区:1.AEH线之上,熔液(l)单相区2.ABE之内,Bi(s)+l 两
36、相区3.HEM之内,Cd(s)+l 两相区4.BEM线以下,Bi(s)+Cd(s)两相区第86页/共181页Cd-Bi二元相图的绘制有三条多相平衡曲线1.ACE线,Bi(s)+熔液 共存时的熔液组成线。2.HFE线,Cd(s)+熔液 共存时的熔液组成线。3.BEM线,Bi(s)+熔液+Cd(s)三相平衡线,三个相的组成分别由B,E,M三个点表示。第87页/共181页Cd-Bi二元相图的绘制有三个特殊点:A点是纯Bi(s)的熔点 H点是纯Cd(s)的熔点E点是Bi(s)+熔液+Cd(s)三相共存点。因为E点温度均低于A点和H点的温度,称为低共熔点在该点析出的混合物称为低共熔混合物它不是化合物,由
37、两相组成,仅混合得非常均匀E点的温度会随外压的改变而改变在这T-x图上,E点仅是某压力下的一个截点第88页/共181页Cd-Bi二元相图的绘制 下面的小图标是金相显微镜的观察结果 后析出的固体镶嵌在先析出固体的结构之中纯Bi(s)与纯Cd(s)有其自身的金属结构 低共熔物有致密的特殊结构,两种固体呈片状或粒状均匀交错在一起,这时系统有较好的强度第89页/共181页2.溶解度法 溶解度法主要绘制水-盐系统相图冰+溶液溶液单相相图的绘制T/K第90页/共181页2.溶解度法图中有四个相区:LAN 以上溶液单相区LAB 之内冰+溶液两相区 NAC 以上,BAC 线以下,冰+溶液溶液单相T/K与溶液两
38、相区冰与 两相区 第91页/共181页2.溶解度法冰+溶液溶液单相T/K有三条两相交界线:LA线 冰+溶液两相共存时,溶液的组成曲线,也称为冰点下降曲线。AN线 +溶液两相共存时,溶液的组成曲线,也称为盐的饱和溶度曲线。BAC线 冰+溶液三相共存线。第92页/共181页2.溶解度法冰+溶液溶液单相T/K有两个特殊点:L点 冰的熔点 盐的熔点极高,受溶解度和水的沸点限制,在图上无法标出A点 冰+溶液三相共存点 溶液组成在A点以左者冷却,先析出冰;在A点以右者冷却,先析出 第93页/共181页2.溶解度法冰+溶液溶液单相T/K第94页/共181页结晶法精制盐类 冷却至Q点,有精盐析出。母液中的可溶
39、性杂质过一段时间要处理或换新溶剂 再升温至O点,加入粗盐,滤去固体杂质,使物系点移到S点,再冷却,如此重复,将粗盐精制成精盐。将粗 盐精制。首先将粗盐溶解,加温至353 K,滤去不溶性杂质,设这时物系点为S 继续降温至R点(R点尽可能接近三相线,但要防止冰同时析出),过滤,得到纯 晶体,滤液浓度相当于y点。第95页/共181页水-盐冷冻液 在化工生产和科学研究中常要用到低温浴,配制合适的水-盐系统,可以得到不同的低温冷冻液水盐系统 低共熔温度252 K218 K262.5 K257.8 K 在冬天,为防止路面结冰,撒上盐,实际用的就是冰点下降原理。第96页/共181页形成化合物的系统A和B两个
40、物质可以形成两类化合物:(1)稳定化合物,包括稳定的水合物,它们有自己 的熔点,在熔点时液相和固相的组成相同。属于这类系统的有:的4种水合物酚-苯酚的3种水合物的2种水合物第97页/共181页形成化合物的系统 与可形成化合物C,H是C的熔点,在C中加入A或B组分都会导致熔点的降低。这张相图可以看作A与C和C与B的两张简单的低共熔相图合并而成。所有的相图分析与简单的二元低共熔相图类似。第98页/共181页如A-C和C-B相图的拼合H点是C的熔点相区组成为有三个熔点两个低共熔点熔液单相有两条三相线第99页/共181页 与 能形成三种稳定的水合物 0.98浓纯硫酸的熔点,在273 K左右 E4点是一
41、水化合物与纯硫酸的低共熔点,在235 K。冬季用管道运送硫酸的浓度为0.93左右第100页/共181页(2)形成不稳定化合物 这种化合物没有自己的熔点,在熔点温度以下就分解为与化合物组成不同的液相和固相。例如:属于这类系统的还有:第101页/共181页(2)形成不稳定化合物分解温度称为异成分熔点或转熔温度FON 线也是三相线,但表示液相组成的点在端点FON线也称为不稳定化合物的转熔线第102页/共181页从相图上画步冷曲线第103页/共181页由稳定化合物转化为不稳定化合物原来的熔点逐步变为转熔点第104页/共181页液、固相都完全互溶的相图液、固相都完全互溶的相图 两个组分在固态和液态时能彼
42、此按任意比例互溶而不生成化合物,也没有低共熔点。以Au-Ag相图为例梭形区之上是熔液单相区梭形区之下是固体溶液单相区梭形区内固-液两相共存上面是熔液组成线,下面是固溶体组成线。第105页/共181页液、固相都完全互溶的相图液、固相都完全互溶的相图 当物系从A点冷却,进入两相区,析出组成为B的固溶体。继续冷却,液相组成沿 AA1A2 线变化,固相组成沿 BB1B2 线变化 因为Au的熔点比Ag高,固相中含Au较多,液相中含Ag较多。在B2点对应的温度以下,液相消失。第106页/共181页完全互溶固溶体的相图枝晶偏析 固-液两相不同于气-液两相,析出晶体时,不易与熔化物建立平衡。由于固相组织的不均
43、匀性,会影响合金的性能。较早析出的晶体含高熔点组分较多,形成枝晶,后析出的晶体含低熔点组分较多,填充在最早析出的枝晶之间,这种现象称为枝晶偏析。第107页/共181页完全互溶固溶体的相图退火 为了使固相合金内部组成更均一,就把合金加热到接近熔点的温度,保持一定时间,使内部组分充分扩散,趋于均一,然后缓慢冷却,这种过程称为退火。退火是金属工件制造工艺中的重要工序。第108页/共181页完全互溶固溶体的相图淬火(quenching)在金属热处理过程中,使金属突然冷却,来不及发生相变,保持高温时的结构状态,这种工序称为淬火。例如,某些钢铁刀具经淬火后可提高硬度。第109页/共181页完全互溶固溶体出
44、现最低或最高点 当两种组分的粒子大小和晶体结构不完全相同时,它们的T-x图上会出现最低点或最高点。第110页/共181页 例如:等系统会出现最低点。但出现最高点的系统较少。第111页/共181页固态部分互溶的二组分系统 两个组分在液态可无限混溶,而在固态只能部分互溶,形成类似于部分互溶双液系的帽形区。在帽形区外,是固溶体单相,在帽形区内,是两种固溶体两相共存。属于这种类型的相图形状各异,现介绍两种类型:(1)有一低共熔点;(2)有一转熔温度。第112页/共181页(1)有一低共熔点者第113页/共181页(1)有一低共熔点者相图上有三个单相区:AEB线以上,熔液单相区有三个两相区:AEJ区,熔
45、液 +AJ是固溶体的组成曲线;AJF以左,固溶体单相BCG以右,固溶体单相BEC区,熔液 +FJECG区,+AE,BE是熔液组成线;BC是固溶体的组成曲线;JEC线为三相共存线第114页/共181页(1)有一低共熔点者 是两个固溶体的固相互相共轭共存区 E点为+两个固溶体的低共熔点 两个固溶体彼此互溶的程度从JF和CG线上读出FJECG区第115页/共181页(1)有一低共熔点者 从a点开始冷到b点,有组成为c的固溶体析出 继续冷却至d 以下,全部凝固为固溶体固相组成沿 I J 线变化 从 j 点开始冷却,最初析出固熔体液相组成沿 k E 线变化 到达 E 点,熔液同时被固溶体和饱和,这时由J
46、,E,C代表的三相平衡共存。第116页/共181页(2)系统有一转熔温度熔液(单相)固溶体单相固溶体单相两相共存两相共存两相共存第117页/共181页(2)系统有一转熔温度相图上有三个单相区:BCA线以左,熔液单相ADF区,固溶体单相BEG以右,固溶体单相有三个两相区BCE L+ACD L+FDEG +因这种平衡组成曲线实验较难测定,故用虚线表示。熔液(单相)固溶体单相固溶体单相两相共存两相共存两相共存第118页/共181页(2)系统有一转熔温度熔液(单相)固溶体单相固溶体单相两相共存两相共存两相共存 一条三相线CDE是三相共存线:CDE对应的温度称为转熔温度。升温到455 K时,固溶体消失,
47、转化为组成为C的熔液和组成为E的固溶体1.熔液(组成为C)2.固溶体(组成为D)3.固溶体(组成为E)第119页/共181页区域熔炼(zone melting)区域熔炼是制备高纯物质的有效方法。可以制备8个9以上的半导体材料(如硅和锗),5个9以上的有机物或将高聚物进行分级。一般是将高频加热环套在需精炼的棒状材料的一端,使之局部熔化。加热环再缓慢向前推进,已熔部分重新凝固。由于杂质在固相和液相中的分布不等,用这种方法重复多次,杂质就会集中到一端,从而得到高纯物质。第120页/共181页区域熔炼(zone melting)第121页/共181页分凝系数 设杂质在固相和液相中的浓度分别为 和 ,则
48、分凝系数 为:,杂质在液相中的浓度大于固相。如果加热环自左至右移动,杂质集中在右端。,杂质在固相中的浓度大于液相,当加热环自左至右移动,杂质集中在左端。第122页/共181页的情况 材料中含有杂质后,使熔点降低。相图上面是熔液,下面是固体,双线内为固液两相区因为 当加热至P点,开始熔化,杂质浓度为加热环移开后,组成为N的固体析出,杂质浓度为 所以固相含杂质比原来少,杂质随加热环移动至右端。第123页/共181页的情况杂质熔点比提纯材料的熔点高组成为P的材料熔化时液相中杂质含量为凝固时对应固体N点的杂质含量为 所以固相中杂质含量比原来多,区域熔炼的结果,杂质集中在左端。因为 如果材料中同时含有
49、和 的杂质,区域熔炼结果必须“斩头去尾”,中间段才是高纯物质。第124页/共181页5.6 三组分系统的相图及其应用三组分系统的相图及其应用等边三角形坐标表示法当用正三棱柱体表示,底面正三角形表示组成,柱高表示温度或压力可用正三角形平面图表示因为 无法用相图表示当保持温度或压力不变当保持温度和压力都不变第125页/共181页三组分系统的相图及其应用第126页/共181页 在等边三角形上,沿反时针方向标出三个顶点等边三角形坐标表示法 三个顶点分别表示纯组分A,B 和 C 三条边上的点表示相应两个组分的质量分数,对应顶点的含量为零三角形内任一点都代表三组分系统第127页/共181页等边三角形坐标表
50、示法(1)在平行于底边的任意一条线上,所有代表物系的点中,含顶角组分的质量分数相等。例如,d,e,f 物系点,含A的质量分数相同(2)在通过顶点的任一条线上,其余两组分之比相等。例如,AD线上,第128页/共181页等边三角形坐标表示法(3)如果代表两个三个组分系统的D点和E点,混合成新系统的物系点O必定落在DE连线上。O点的位置可用杠杆规则求算。用 分别代表D和E的质量,则有:哪个物系含量多,O点就靠近那个物系点。第129页/共181页等边三角形坐标表示法(4)由三个三组分系统D,E,F混合而成的新系统的物系点,落在这三点组成三角形的重心位置,即H点。先用杠杆规则求出D,E混合后新系统的物系