《281锐角三角函数第一课时.ppt》由会员分享,可在线阅读,更多相关《281锐角三角函数第一课时.ppt(51页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、问题问题1 1 为了绿化荒山,某地打算从位于山脚下的机井为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌现测得斜坡与水平面所成角的坡面的绿地进行喷灌现测得斜坡与水平面所成角的度数是度数是3030,为使出水口的高度为,为使出水口的高度为35m35m,那么需要准,那么需要准备多长的水管?备多长的水管?这个问题可以归结为,在这个问题可以归结为,在RtABC中,中,C90,A30,BC35m,求,求AB的长的长.ABC 思考:你能将实际问题归结为数学问题吗?思考:你能将实际问题归结为数学问题吗?情情境
2、境探探究究 根据根据“在直角三角形中,在直角三角形中,30角所对的直角边等于斜角所对的直角边等于斜边的一半边的一半”,即,即ABC 在在RtABC中,中,C90,A30,BC35m,求,求AB的长的长.可得可得 AB=2BC=70m,即需要准备,即需要准备70m长的水长的水管。管。在上面的问题中,如果使出水口的高度为在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?,那么需要准备多长的水管?结论:在一个直角三角形中,如果一个锐角等于结论:在一个直角三角形中,如果一个锐角等于30,那,那么不管三角形的大小如何,这个角的对边与斜边的比值么不管三角形的大小如何,这个角的对边与斜边的
3、比值都等于都等于 。ABC50m30mB C 即在直角三角形中,当一个锐角等于即在直角三角形中,当一个锐角等于45时,时,不管这个直角三角形的大小如何,这个角的对不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于边与斜边的比都等于 。如图,任意画一个如图,任意画一个RtABC,使使C90,A45,计算,计算A的对边与斜边的比的对边与斜边的比 ,你,你能得出什么结论?能得出什么结论?ABC 综上可知,在一个综上可知,在一个RtABC中,中,C90,一般地,当一般地,当A 取其他一定度数的锐角时,它的取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?对边与斜边的比是否也是一个固
4、定值?当当A30时,时,A的对边与斜边的比都等于的对边与斜边的比都等于 ,是一个固定值;是一个固定值;当当A45时,时,A的对边与斜边的比都等于的对边与斜边的比都等于 ,也是一个固定值也是一个固定值.探究探究ABCABC 任意画任意画RtABC和和RtABC,使得,使得CC90,AA ,那么,那么 与与 有什么关系你有什么关系你能解能解释释一下一下吗吗?由于由于CC90,AA 所以所以RtABCRtABC 这就是说,在直角三角形中,当锐角这就是说,在直角三角形中,当锐角A的度数的度数一定时,不管三角形的大小如何,一定时,不管三角形的大小如何,A的对边与的对边与斜边的比都是一个固定值斜边的比都是
5、一个固定值探究探究 如图,在如图,在RtABC中,中,C90,我们把锐角,我们把锐角A的的对边与斜边的比叫做对边与斜边的比叫做A的正弦的正弦(sine),记作),记作sinA,即即例如,当例如,当A30时,我们有时,我们有当当A45时,我们有时,我们有ABCcab对边对边斜边斜边在图中在图中A的对边记作的对边记作aB的对边记作的对边记作bC的对边记作的对边记作c 正正 弦弦 注意注意sinA是一个完整的符号,它表示是一个完整的符号,它表示A的正的正弦,记号里习惯省去角的符号弦,记号里习惯省去角的符号“”;sinA没有单位,它表示一个比值,即直角没有单位,它表示一个比值,即直角三角形中三角形中A
6、的对边与斜边的比;的对边与斜边的比;sinA不表示不表示“sin”乘以乘以“A”。例例1 如图,在如图,在RtABC中,中,C90,求,求sinA和和sinB的值的值ABC34 例例 题题 示示 范范ABC135(1)(2)试着完成图(试着完成图(2)练习练习AC35B2、在平面直角平面坐标系中,已知点、在平面直角平面坐标系中,已知点A(3,0)和和B(0,-4),则,则sinOAB等于等于_.3、在、在RtABC中,中,C=90,AD是是BC边边上的中线,上的中线,AC=2,BC=4,则,则sinDAC=_.4、在、在Rt ABC中中,C=90,则则sin A=_.1、如图,求、如图,求si
7、nA和和sinB的值的值5、如图,在、如图,在ABC中,中,AB=CB=5,sinA=,求求ABC 的面积。的面积。BAC5528.1锐角三角函数(锐角三角函数(2)正弦正弦 正切正切复习与探究:复习与探究:1.锐角正弦的定义锐角正弦的定义 在在 中,中,A的正弦:的正弦:2、当锐角、当锐角A确定时,确定时,A的对边与斜边的比就随之的对边与斜边的比就随之确定。此时,其他边之间的比是否也随之确定?为确定。此时,其他边之间的比是否也随之确定?为什么?什么?新知探索新知探索:1、你能将、你能将“其他边之比其他边之比”用比例的用比例的式子表示出来吗?这样的比有多少式子表示出来吗?这样的比有多少?2、当
8、锐角、当锐角A确定时,确定时,A的邻边与斜边的比,的邻边与斜边的比,A的对边与邻边的比也随之确定吗?为什么?交流并的对边与邻边的比也随之确定吗?为什么?交流并说出理由。说出理由。方法一:从特殊到一般,仿照正弦的研究过程;方法一:从特殊到一般,仿照正弦的研究过程;方法二:根据相似三角形的性质来说明。方法二:根据相似三角形的性质来说明。如图,在如图,在RtABC中,中,C90,ABC斜边斜边c对边对边a邻边邻边b我们把锐角我们把锐角A的邻边与斜边的比叫做的邻边与斜边的比叫做A的的 余弦余弦(cosine),记作),记作cosA,即即我们把锐角我们把锐角A的对边与邻边的比叫做的对边与邻边的比叫做A的
9、的 正切正切(tangent),记作),记作tanA,即即rldmm8989889注意注意cosA,tanA是一个完整的符号,它表示是一个完整的符号,它表示A的余弦、正切,记号里习惯省去角的符的余弦、正切,记号里习惯省去角的符号号“”;cosA,tanA没有单位,它表示一个比值,没有单位,它表示一个比值,即直角三角形中即直角三角形中A的邻边与斜边的比、对的邻边与斜边的比、对边与邻边的比;边与邻边的比;cosA不表示不表示“cos”乘以乘以“A”,tanA不不表示表示“tan”乘以乘以“A”rldmm8989889 对于锐角对于锐角A的每一的每一个确定的值,个确定的值,sinA有有唯一确定的值与
10、它对唯一确定的值与它对应,所以应,所以sinA是是A的函的函数数。同样地,同样地,cosA,tanA也是也是A的函数的函数。锐角锐角A的正弦、余弦、的正弦、余弦、正切都叫做正切都叫做A的的锐角三锐角三角函数角函数.rldmm8989889ABC6例例1 如图,在如图,在RtABC中,中,C90,BC=6,求,求cosA和和tanB的值的值rldmm8989889例例2 如图,在如图,在RtABC中,中,C90,BC=2,AB=3,求,求A,B的正弦、余弦、正切值的正弦、余弦、正切值ABC23延伸:延伸:由上面的计算,你能猜想由上面的计算,你能猜想A,B的正弦、余弦值的正弦、余弦值有什么规律吗?
11、有什么规律吗?结论结论:一个锐角的正弦等于它余角的余弦,或一个锐角的:一个锐角的正弦等于它余角的余弦,或一个锐角的余弦等于它余角的正弦。余弦等于它余角的正弦。rldmm8989889练习课本课本P78 练习练习1,2,3.补充练习补充练习 1、在等腰、在等腰ABC中,中,AB=AC=5,BC=6,求,求sinB,cosB,tanB.ABCDrldmm8989889补充练习补充练习2、如图所示,在、如图所示,在ABC中,中,ACB90,AC=12,AB=13,BCM=BAC,求,求sin BAC和点和点B到直线到直线MC的距离的距离3、如图所示,、如图所示,CD是是RtABC的斜边的斜边AB上的
12、高,上的高,求证:求证:28.1锐角三角函数(锐角三角函数(3)rldmm8989889 AB CAA的的对边对边aAA的的邻边邻边b斜边斜边crldmm8989889 请同学们拿出请同学们拿出自己的学习工具自己的学习工具一副三角尺,思一副三角尺,思考并回答下列问题:考并回答下列问题:1、这两块三角尺各有几个锐角?它们分别等于多少度?、这两块三角尺各有几个锐角?它们分别等于多少度?2、每块三角尺的三边之间有怎样的特殊关系?如、每块三角尺的三边之间有怎样的特殊关系?如果设每块三角尺较短的边长为果设每块三角尺较短的边长为1,请你说出未知边,请你说出未知边的长度。的长度。306045121145新知
13、探索新知探索:30:30角的三角函数值角的三角函数值sin30=cos30=tan30=rldmm8989889cos45=tan45=sin45=新知探索新知探索:45:45角的三角函数值角的三角函数值sin60=cos60=tan60=新知探索新知探索:60:60角的三角函数值角的三角函数值rldmm898988930、45、60角的正弦值、余弦值和正切值角的正弦值、余弦值和正切值如下表:如下表:锐角锐角a三角函数三角函数304560sin acos atan arldmm8989889例例1 求下列各式的值:求下列各式的值:(1)cos60sin60(2)rldmm8989889求下列各
14、式的值:求下列各式的值:rldmm8989889例例2 (1)如图,在)如图,在RtABC中,中,C90,求求A的度数的度数ABCrldmm8989889(2)如图,已知圆锥的高)如图,已知圆锥的高AO等于圆等于圆锥的底面半径锥的底面半径OB的的 倍,求倍,求 a ABO 当当A,B为锐角为锐角时,若时,若AB,则,则sinAsinB,cosAcosB,tanAtanB.rldmm8989889 1、在、在RtABC中,中,C90,求求A、B的度数的度数BACrldmm89898892 2、求适合下列各式的锐角、求适合下列各式的锐角rldmm8989889ABCD4、如图、如图,ABC中中,C
15、=900,BD平分平分ABC,BC=12,BD=,求求A的度数及的度数及AD的长的长.rldmm8989889小结小结 :我们学习了我们学习了30,45,60这几类这几类特殊角的三角函数值特殊角的三角函数值 rldmm8989889作业作业课本课本P82 第第3题题同步练习同步练习P51-52(四)(五)(四)(五)28.1锐角三角函数(锐角三角函数(4)rldmm8989889 DABE1.6m20m42C引例引例 升国旗时,小明站在操场上离国旗升国旗时,小明站在操场上离国旗20m处行注目礼。处行注目礼。当国旗升至顶端时,小明看国旗视线的仰角为当国旗升至顶端时,小明看国旗视线的仰角为42(如
16、图(如图所示),若小明双眼离地面所示),若小明双眼离地面1.60m,你能帮助小明求出旗,你能帮助小明求出旗杆杆AB的高度吗?的高度吗?这里的这里的tan42是多少呢?是多少呢?rldmm8989889 前面我们学习了前面我们学习了特殊角特殊角304560的三角的三角函数值,一些函数值,一些非特殊角非特殊角(如如175689等等)的三的三角函数值又怎么求呢?角函数值又怎么求呢?这一节课我们就学习这一节课我们就学习借助计算器借助计算器来完来完成这个任务成这个任务.rldmm89898891、用科学计算器求一般锐角的三角函数值:、用科学计算器求一般锐角的三角函数值:(1)我们要用到科学计算器中的)我
17、们要用到科学计算器中的键:键:sincostan(2)按键顺序)按键顺序如果锐角恰是整数度数时,以如果锐角恰是整数度数时,以“求求sin18”为例,按键顺序如下:为例,按键顺序如下:按键顺序按键顺序 显示结果显示结果sin18sin18sin180.309 016 994 sin18=0.309 016 9940.31rldmm89898891、用科学计算器求一般锐角的三角函数值:、用科学计算器求一般锐角的三角函数值:如果锐角的度数是度、分形式时,以如果锐角的度数是度、分形式时,以“求求tan3036”为例,按键顺序如下:为例,按键顺序如下:方法一:方法一:按键顺序按键顺序显示结果显示结果ta
18、n3036tan3036tan30360.591 398 351 tan3036=0.591 398 3510.59方法二:方法二:先转化,先转化,3036=30.6,后仿照后仿照 sin18的求法。的求法。如果锐角的度数是度、分、秒形式时,依照上面的如果锐角的度数是度、分、秒形式时,依照上面的方法一求解。方法一求解。rldmm8989889(3)完成引例中的求解:)完成引例中的求解:tan2042+1.619.608 080 89 AB=19.608 080 8919.61m即旗杆的高度是即旗杆的高度是19.61m.rldmm8989889练习练习:使用计算器求下列锐角的三角函数值使用计算器
19、求下列锐角的三角函数值.(精确到(精确到0.01)(1)sin20,cos70;sin35,cos55;sin1532,cos7428;(2)tan38,tan802543;(3)sin15+cos61tan76.rldmm8989889按键的顺序按键的顺序显示结果显示结果SHIFT20917.301507834sin7=已知三角函数值求角度,要用到已知三角函数值求角度,要用到sin,Cos,tan的的第二功能键第二功能键“sin Cos,tan”键例如:已知键例如:已知sin0.2974,0.2974,求锐角求锐角按健顺序为:按健顺序为:如果再按如果再按“度分秒健度分秒健”就换算成度分就换算
20、成度分秒,秒,即即 17o185.43”2、已知锐角的三角函数值,求锐角的度数:、已知锐角的三角函数值,求锐角的度数:rldmm8989889例例 根据下面的条件,求锐角根据下面的条件,求锐角的大小(精确到的大小(精确到1 1)(1)sin=0.4511;(;(2)cos=0.7857;(3)tan=1.4036.w按键盘顺序如下按键盘顺序如下:按键的顺序按键的顺序显示结果显示结果26260 048485151”0.sin115=4SHIFT即即 2604851”rldmm8989889驶向胜利驶向胜利的彼岸的彼岸练习练习:1、已知下列锐角三角函数值,用计算、已知下列锐角三角函数值,用计算器求
21、其相应的锐角:器求其相应的锐角:(1)sinA=0.627 5,sinB=0.054 7;(2)cosA=0.625 2,cosB=0.165 9;(3)tanA=4.842 5,tanB=0.881 6.rldmm89898892、已知、已知tanA=3.1748,利用计算器求,利用计算器求锐角锐角A的度数。的度数。(精确到精确到1)答案答案:A7252练习练习:3、已知锐角、已知锐角a的三角函数值,使用计算器求锐角的三角函数值,使用计算器求锐角a(精确(精确到到1)(1)sin a=0.2476;(;(2)cos a=0.4;(;(3)tan a=0.1890.答案答案:(1)1420;(3)1042.(2)6520;rldmm89898894、一段公路弯道呈弧形,测得弯道、一段公路弯道呈弧形,测得弯道AB两端的距离为两端的距离为200米,米,AB 的半径为的半径为1000米,求弯道的长(精确到米,求弯道的长(精确到0.1米米)ABOR