电磁场和电磁波第讲.ppt

上传人:石*** 文档编号:87113816 上传时间:2023-04-16 格式:PPT 页数:27 大小:3.86MB
返回 下载 相关 举报
电磁场和电磁波第讲.ppt_第1页
第1页 / 共27页
电磁场和电磁波第讲.ppt_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《电磁场和电磁波第讲.ppt》由会员分享,可在线阅读,更多相关《电磁场和电磁波第讲.ppt(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、电磁场和电磁波第讲现在学习的是第1页,共27页本章内容本章内容1.1 矢量代数矢量代数1.2 常用正交曲线坐标系常用正交曲线坐标系1.3 标量场的梯度标量场的梯度1.4 矢量场的通量与散度矢量场的通量与散度1.5 矢量场的环流和旋度矢量场的环流和旋度1.6 无旋场与无散场无旋场与无散场1.7 拉普拉斯运算与格林定理拉普拉斯运算与格林定理1.8 亥姆霍兹定理亥姆霍兹定理现在学习的是第2页,共27页 1.1.标量和矢量标量和矢量矢量的大小或模矢量的大小或模:矢量的单位矢量矢量的单位矢量:标量标量:一个只用大小描述的物理量。一个只用大小描述的物理量。矢量的代数表示矢量的代数表示:1.1 矢量代数矢量

2、代数矢量矢量:一个既有大小又有方向特性的物理量,常用黑体字一个既有大小又有方向特性的物理量,常用黑体字 母或带箭头的字母表示。母或带箭头的字母表示。矢量的几何表示矢量的几何表示:一个矢量可用一条有方向的线段来表示一个矢量可用一条有方向的线段来表示 注意注意:单位矢量不一定是常矢量。单位矢量不一定是常矢量。矢量的几何表示矢量的几何表示常矢量常矢量:大小和方向均不变的矢量。大小和方向均不变的矢量。现在学习的是第3页,共27页矢量用坐标分量表示矢量用坐标分量表示zxy分别是直角坐标分别是直角坐标x、y、z的单位矢量的单位矢量现在学习的是第4页,共27页(1)矢量的加减法)矢量的加减法 两矢量的加减在

3、几何上是以这两矢量为邻两矢量的加减在几何上是以这两矢量为邻边的平行四边形的对角线边的平行四边形的对角线,如图所示。如图所示。矢量的加减符合交换律和结合律矢量的加减符合交换律和结合律2.矢量的代数运算矢量的代数运算 矢量的加法矢量的加法矢量的减法矢量的减法 在直角坐标系中两矢量的加法和减法:在直角坐标系中两矢量的加法和减法:结合律结合律交换律交换律现在学习的是第5页,共27页(2 2)标量乘矢量)标量乘矢量(3)矢量的标积(点积)矢量的标积(点积)矢量的标积符合交换律矢量的标积符合交换律q矢量矢量 与与 的夹角的夹角现在学习的是第6页,共27页(4)矢量的矢积(叉积)矢量的矢积(叉积)qsinA

4、Bq矢量矢量 与与 的叉积的叉积用坐标分量表示为用坐标分量表示为写成行列式形式为写成行列式形式为若若 ,则,则若若 ,则,则现在学习的是第7页,共27页(5 5)矢量的混合运算)矢量的混合运算 分配律分配律 分配律分配律 标量三重积标量三重积 矢量三重积矢量三重积现在学习的是第8页,共27页 三维空间任意一点的位置可通过三条相互正交曲线的交点来确定。三维空间任意一点的位置可通过三条相互正交曲线的交点来确定。1 1.2.2 三种常用的正交曲线坐标系三种常用的正交曲线坐标系 在电磁场与波理论中,在电磁场与波理论中,三种常用的正交曲线坐标系为:三种常用的正交曲线坐标系为:直角直角坐标系、坐标系、圆柱

5、坐标系和球面坐标系圆柱坐标系和球面坐标系。三条正交曲线组成的确定三维空间任意点位置的体系,称为三条正交曲线组成的确定三维空间任意点位置的体系,称为正交曲线正交曲线坐标系坐标系;三条正交曲线称为;三条正交曲线称为坐标轴坐标轴;描述坐标轴的量称为;描述坐标轴的量称为坐标变量坐标变量。现在学习的是第9页,共27页 1、直角坐标系、直角坐标系 位置矢量位置矢量面元矢量面元矢量线元矢量线元矢量体积元体积元坐标变量坐标变量坐标单位矢量坐标单位矢量 点点P(x0,y0,z0)0yy=(平面)(平面)o x y z0 xx=(平面)(平面)0zz=(平面(平面)P 直角坐标系直角坐标系 x yz直角坐标系的长

6、度元、面积元、体积元直角坐标系的长度元、面积元、体积元 odzd ydx现在学习的是第10页,共27页 2、圆柱面坐标系、圆柱面坐标系坐标变量坐标变量坐标单位矢量坐标单位矢量位置矢量位置矢量线元矢量线元矢量体积元体积元面元矢量面元矢量现在学习的是第11页,共27页现在学习的是第12页,共27页 3、球面坐标系、球面坐标系球面坐标系球面坐标系球坐标系中的线元、面元和体积元球坐标系中的线元、面元和体积元坐标变量坐标变量坐标单位矢量坐标单位矢量位置矢量位置矢量线元矢量线元矢量体积元体积元面元矢量面元矢量现在学习的是第13页,共27页现在学习的是第14页,共27页现在学习的是第15页,共27页 1.3

7、 标量场的梯度标量场的梯度q如果物理量是标量,称该场为如果物理量是标量,称该场为标量场标量场。例如例如:温度场、电位场、高度场等。:温度场、电位场、高度场等。q如果物理量是矢量,称该场为如果物理量是矢量,称该场为矢量场矢量场。例如例如:流速场、重力场、电场、磁场等。:流速场、重力场、电场、磁场等。q如果场与时间无关,称为如果场与时间无关,称为静态场静态场,反之为,反之为时变场时变场。时变标量场和矢量场可分别表示为:时变标量场和矢量场可分别表示为:确定空间区域上的每一点都有确定物理量与之对应,称在该区域上定确定空间区域上的每一点都有确定物理量与之对应,称在该区域上定义了一个义了一个场场。从数学上

8、看,场是定义在空间区域上的函数:从数学上看,场是定义在空间区域上的函数:标量场和矢量场标量场和矢量场静态标量场和矢量场可分别表示为:静态标量场和矢量场可分别表示为:现在学习的是第16页,共27页1.1.标量场的等值面标量场的等值面标量场的等值线标量场的等值线(面面)等值面等值面:标量场取得同一数值的点在空标量场取得同一数值的点在空 间形成的曲面。间形成的曲面。等值面方程等值面方程:常数常数C 取一系列不同的值,就得到一系列不同的取一系列不同的值,就得到一系列不同的等值面,形成等值面族;等值面,形成等值面族;标量场的等值面充满场所在的整个空间;标量场的等值面充满场所在的整个空间;标量场的等值面互

9、不相交。标量场的等值面互不相交。等值面的特点等值面的特点:意义意义:形象直观地描述了物理量在空间形象直观地描述了物理量在空间 的分布状态。的分布状态。现在学习的是第17页,共27页2.方向导数方向导数意义意义:方向性导数表示场沿空间某方向的变化率:方向性导数表示场沿空间某方向的变化率。概念概念:u(M)沿沿 方向增加;方向增加;u(M)沿沿 方向减小;方向减小;u(M)沿沿 方向无变化。方向无变化。M0M方向导数的概念方向导数的概念 特点特点:方向性导数既与点:方向性导数既与点M0有关,也与有关,也与 方向有关方向有关。问题问题:在什么方向上变化率最大、其最大的变化率为多少?:在什么方向上变化

10、率最大、其最大的变化率为多少?的方向余弦。的方向余弦。式中式中:现在学习的是第18页,共27页梯度的表达式梯度的表达式:圆柱面坐标系圆柱面坐标系 球面坐标系球面坐标系直角面坐标系直角面坐标系 3、标量场的梯度、标量场的梯度(或或 )意义意义:描述标量描述标量场在某点的最大变化率及其变化最大的方向场在某点的最大变化率及其变化最大的方向概念概念:,其中其中 取得最大值的方向取得最大值的方向现在学习的是第19页,共27页普遍定义,与普遍定义,与坐标无关!坐标无关!直角坐标系中梯度的表示式直角坐标系中梯度的表示式 利用方向导数的计算公式利用方向导数的计算公式由上式可见,当由上式可见,当 与与 方向一致

11、时,方向导数值最大,为方向一致时,方向导数值最大,为 。的方向就是取得最大方向导数的方向。于是有的方向就是取得最大方向导数的方向。于是有现在学习的是第20页,共27页为方便,引入哈密顿算符为方便,引入哈密顿算符 于是,梯度可以表示为于是,梯度可以表示为现在学习的是第21页,共27页标量场的梯度是矢量场,它在空间某点的方标量场的梯度是矢量场,它在空间某点的方向表示该点场变化最大(增大)的方向,其向表示该点场变化最大(增大)的方向,其数值表示变化最大方向上场的空间变化率。数值表示变化最大方向上场的空间变化率。标量场在某个方向上的方向导数,是梯度在标量场在某个方向上的方向导数,是梯度在该方向上的投影

12、。该方向上的投影。梯度的性质梯度的性质:梯度运算的基本公式梯度运算的基本公式:标量场的梯度垂直于通过该点的等值面(或切平面)标量场的梯度垂直于通过该点的等值面(或切平面)现在学习的是第22页,共27页例例1.1 设设求:求:解:对复合函数求梯度,应用公式解:对复合函数求梯度,应用公式(5)有有现在学习的是第23页,共27页结论:对源点的梯度与对场点的梯度等大反向。即结论:对源点的梯度与对场点的梯度等大反向。即现在学习的是第24页,共27页 例例1.2.1 设设一一标标量量函函数数 (x,y,z)=x2y2z 描描述述了了空空间间标标量场。试求:量场。试求:(1)该该函函数数 在在点点P(1,1

13、,1)处处的的梯梯度度,以以及及表表示示该该梯梯度度方方向向的的单位矢量;单位矢量;(2)求该函数求该函数 沿单位矢量沿单位矢量 el=ex cos60 ey cos45 ez cos60 方方向向的的方方向向导导数数,并并以以点点P(1,1,1)处处的的方方向向导导数数值值与与该该点点的的梯梯度度值值作作以以比比较较,得得出相应结论。出相应结论。解解 (1)由梯度计算公式,可求得由梯度计算公式,可求得P点的梯度为点的梯度为现在学习的是第25页,共27页表征其方向的单位矢量表征其方向的单位矢量 (2)由方向导数与梯度之间的关系式可知,沿由方向导数与梯度之间的关系式可知,沿el方向的方向导数为方向的方向导数为现在学习的是第26页,共27页而该点的梯度值为而该点的梯度值为 显显然然,梯梯度度 描描述述了了P P点点处处标标量量函函数数 的的最最大大变变化化率率,即最大的方向导数,故即最大的方向导数,故 恒成立。恒成立。对于给定的对于给定的P P点,上述方向导数在该点取值为点,上述方向导数在该点取值为现在学习的是第27页,共27页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁