导数的几何意义上课.ppt

上传人:hyn****60 文档编号:87092336 上传时间:2023-04-16 格式:PPT 页数:20 大小:693.50KB
返回 下载 相关 举报
导数的几何意义上课.ppt_第1页
第1页 / 共20页
导数的几何意义上课.ppt_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《导数的几何意义上课.ppt》由会员分享,可在线阅读,更多相关《导数的几何意义上课.ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 回顾回顾平均变化率平均变化率函数函数y=f(x)的定义域为的定义域为D,x1.x2D,f(x)从从x1到到x2平平均变化率为均变化率为:割线的斜率割线的斜率OABxyY=f(x)x1x2f(x1)f(x2)x2-x1=xf(x2)-f(x1)=y回顾回顾以平均速度代替瞬时速度,然后通过以平均速度代替瞬时速度,然后通过取极限,取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。从瞬时速度的近似值过渡到瞬时速度的精确值。我们把物体在某一时刻的速度称为我们把物体在某一时刻的速度称为瞬时速度瞬时速度.从从函函数数y=f(x)在在x=x0处处的的瞬瞬时时变变化化率率是是:我们称它为函数我们称它为函数y=

2、y=f(xf(x)在在x=xx=x0 0处的导数,记作处的导数,记作f f(x(x0 0)或或y y|xx|xx0 0即即 由导数的意义可知由导数的意义可知,求函数求函数y=f(x)在点在点x0处的处的导数的基本方法是导数的基本方法是:注意注意:这里的增量不是一般意义上的增量这里的增量不是一般意义上的增量,它可正也可负它可正也可负.自变量的增量自变量的增量x的形式是多样的的形式是多样的,但不论但不论x选择选择 哪种形式哪种形式,y也必须选择与之相对应的形式也必须选择与之相对应的形式.回回顾顾再再观观察察-直直线线和和P附附近近的的曲曲线线的的贴贴近近程程度度!在点在点P附近,曲线附近,曲线f(

3、x)可以用在点可以用在点P处的切线处的切线PT近近似代替似代替。PQoxyy=f(x)割割线线切线切线T请看当点请看当点Q沿着曲线逐渐向点沿着曲线逐渐向点P接近时接近时,割线割线PQ绕着绕着点点P逐渐转动的情况逐渐转动的情况.我们发现我们发现,当点当点Q沿着曲线无限接近点沿着曲线无限接近点P即即x0时时,割线割线PQ有一个确定位置有一个确定位置PT.则我们把直线则我们把直线PT称为称为曲线在点曲线在点P处的处的切线切线.设切线的倾斜角为设切线的倾斜角为,那么当那么当x0时时,割线割线PQ的的斜率斜率,称为曲线在点称为曲线在点P处的处的切线的斜率切线的斜率.即即:这个概念这个概念:提供了求曲线上

4、某点切线的斜率的一提供了求曲线上某点切线的斜率的一种方法种方法;切线斜率的本质切线斜率的本质函数在函数在x=x0处的导数处的导数.导数的几何意义导数的几何意义 函数函数 y=f(x)在点在点x0处的导数的几何意义,就是曲处的导数的几何意义,就是曲线线 y=f(x)在点在点P(x0,f(x0)处的切线的斜率处的切线的斜率.即即:故故曲线曲线y=f(x)在点在点P(x0,f(x0)处的切线方程是处的切线方程是:例例1:求曲线求曲线y=f(x)=x2+1在点在点P(1,2)处的切线方程处的切线方程.QPy=x2+1xy-111OjMDyDx因此因此,切线方程为切线方程为y-2=2(x-1),即即y=

5、2x.(1)求出函数在点)求出函数在点x0处的变化率处的变化率 ,得到曲线在点得到曲线在点(x0,f(x0)的的切线的斜率切线的斜率切线的斜率切线的斜率。(2)根据直线方程的)根据直线方程的点斜式写出切线方程点斜式写出切线方程点斜式写出切线方程点斜式写出切线方程,即即求切线方程的步骤:求切线方程的步骤:例例:高台跳水运动中,高台跳水运动中,秒秒 时运动员相时运动员相对于水面的高度是对于水面的高度是 (单位:(单位:),求运动员在),求运动员在 时的瞬时时的瞬时速度,并解释此时的运动状态速度,并解释此时的运动状态;在在 呢呢?同理,同理,运动员在时的瞬时速度为运动员在时的瞬时速度为 ,上升上升下

6、落下落这说明运动员在附近,正以大约这说明运动员在附近,正以大约 的速率的速率 。1.在函数在函数 的的图像上,图像上,(1)用图形来体现导数用图形来体现导数 ,的几何意义的几何意义.(2)请描述,比较曲线分别在请描述,比较曲线分别在 附近增(减)以及增(减)快慢的情况。附近增(减)以及增(减)快慢的情况。在在 附近呢?附近呢?(2)请描述,比较曲线分别在请描述,比较曲线分别在 附近增(减)以及增(减)快慢的情况。附近增(减)以及增(减)快慢的情况。在在 附近呢?附近呢?增(减增(减):增(减)增(减)快慢:快慢:=切线的斜率切线的斜率附近:附近:瞬时瞬时变化率变化率(正或负)(正或负)即:瞬时

7、变化率(导数)即:瞬时变化率(导数)(数形结合,以直代曲)(数形结合,以直代曲)画切线画切线即:导数即:导数 的绝对值的大小的绝对值的大小=切线斜率的绝对值的切线斜率的绝对值的 大小大小切线的倾斜程度切线的倾斜程度(陡峭程度)(陡峭程度)以简单对象刻画复杂的对象以简单对象刻画复杂的对象(2)曲线在曲线在 时,切线平行于时,切线平行于x轴,曲线在轴,曲线在 附近比较平坦,几乎没有升降附近比较平坦,几乎没有升降 曲线在曲线在 处切线处切线 的斜率的斜率 0 在在 附近,曲线附近,曲线 ,函数在,函数在 附近单调附近单调如图,切线如图,切线 的倾斜程度大于切线的的倾斜程度大于切线的倾斜程度,倾斜程度

8、,大于大于上升上升递增递增上升上升这说明曲线在这说明曲线在 附近比在附近附近比在附近 得迅速得迅速递减递减下降下降小于小于下降下降在不致发生混淆时,在不致发生混淆时,导函数导函数也简称也简称导数导数函数导函数函数导函数由函数由函数f(x)在在x=x0处求导数的过程可以看到处求导数的过程可以看到,当时当时,f(x0)是一个确定的数是一个确定的数.那么那么,当当x变化时变化时,便是便是x的的一个函数一个函数,我们叫它为我们叫它为f(x)的导函数的导函数.即即:小结:小结:.函数函数 在在 处的导数处的导数 的的几何意义,几何意义,就是函数就是函数 的图像在点的图像在点 处的切线处的切线AD的斜率的斜率(数形结合)(数形结合)切线切线 AD的斜率的斜率3.导函数导函数(简称导数简称导数)2.利用利用导数的几何意义导数的几何意义解释实际生活问题,解释实际生活问题,体会体会“数形结合数形结合”,“以直代曲以直代曲”的数学的数学思想方法。思想方法。以简单对象刻画复杂的对象以简单对象刻画复杂的对象

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁