2022-2023学年甘孜市重点中学中考数学押题卷含解析.doc

上传人:茅**** 文档编号:87069304 上传时间:2023-04-16 格式:DOC 页数:24 大小:747.50KB
返回 下载 相关 举报
2022-2023学年甘孜市重点中学中考数学押题卷含解析.doc_第1页
第1页 / 共24页
2022-2023学年甘孜市重点中学中考数学押题卷含解析.doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《2022-2023学年甘孜市重点中学中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年甘孜市重点中学中考数学押题卷含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,点E在DBC的边DB上,点A在DBC内部,DAE=BAC=90,AD=AE,AB=AC给出下列结论:BD=CE;ABD+ECB=45;BDCE;BE1=1(AD1+AB1)CD1其中正确的是()ABCD2如图,在RtABC中,B=90,A=3

2、0,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则EAD的余弦值是()ABCD3如图,向四个形状不同高同为h的水瓶中注水,注满为止如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()ABCD4下图是某几何体的三视图,则这个几何体是( )A棱柱B圆柱C棱锥D圆锥5下列运算正确的是()Aa3a2=a6Ba2=C32=D(a+2)(a2)=a2+46如图:A、B、C、D四点在一条直线上,若ABCD,下列各式表示线段AC错误的是( )AACADCDBACAB+BCCACBDABDACADAB7一个几何体的三

3、视图如图所示,则该几何体的表面积是()A24+2B16+4C16+8D16+128如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD9对于不等式组,下列说法正确的是()A此不等式组的正整数解为1,2,3B此不等式组的解集为C此不等式组有5个整数解D此不等式组无解10如图是抛物线y1=ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论:2a+b=0;abc0;方程ax2+bx+c=3有两个相等的

4、实数根;抛物线与x轴的另一个交点是(1,0);当1x4时,有y2y1,其中正确的是( )ABCD11如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:AQDP;OA2=OEOP;SAOD=S四边形OECF;当BP=1时,tanOAE= ,其中正确结论的个数是( )A1B2C3D412下列方程中,是一元二次方程的是()A2xy=3Bx2+=2Cx2+1=x21Dx(x1)=0二、填空题:(本大题共6个小题,每小题4分,共24分)13如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点

5、B,C,已知测得AD100,AE200,AB40,AC20,BC30,则通过计算可得DE长为_14如图,在平面直角坐标系中,将ABO绕点A顺时针旋转到AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,点C2在x轴上,将A1B1C2绕点C2顺时针旋转到A2B2C2的位置,点A2在x轴上,依次进行下去若点A(,0),B(0,4),则点B4的坐标为_,点B2017的坐标为_15在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上(1)已知a=1,点B的纵坐标

6、为1如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为_(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =_16已知关于x的方程x22xm=0没有实数根,那么m的取值范围是_17已知方程组,则x+y的值为_18如图,在矩形ABCD中,AB=,E是BC的中点,AEBD于点F,则CF的长是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB为O的直径,点E在O,C为弧BE的中点,过点C作直线CDAE于D,连接AC、BC试判断直线CD与O的位置关系,并说明理由若A

7、D=2,AC=,求O的半径20(6分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条超市约定:随机发放,早餐一人一份,一份两样,一样一个(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率21(6分)计算: + 2018022(8分)已知关于x的方程x26mx+9m29=1(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1x2,若x1=2x2,求m的值23(8分)为迎接“世界华人炎帝故里寻

8、根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1x15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=,设李师傅第x天创造的产品利润为W元直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后统计发现平均每个工人每天创造的利润为299元工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,

9、则该工人当天可获得20元奖金请计算李师傅共可获得多少元奖金?24(10分)计算:(2)0+4cos30|25(10分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.2 9.69.67.89.3 4 6.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根据上面的数据,将下表补充完整:4.0x4.95.0x5.96.0x6.97.0x7.98.0x8.99.0x10.0甲101215乙_(说明:月销售额在8.0万元及以上可以获得奖金,7.07.9万元为良好,6.06.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如表所示

10、:结论:人员平均数(万元)中位数(万元)众数(万元)甲8.28.99.6乙8.28.49.7(1)估计乙业务员能获得奖金的月份有_个;(2)可以推断出_业务员的销售业绩好,理由为_(至少从两个不同的角度说明推断的合理性)26(12分)已知抛物线y=a(x-1)2+3(a0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M(1)求a的值,并写出点B的坐标;(2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DEx轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.27(12分)如图,O是ABC的外接圆

11、,BC为O的直径,点E为ABC的内心,连接AE并延长交O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE(1)求证:DB=DE;(2)求证:直线CF为O的切线;(3)若CF=4,求图中阴影部分的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分析:只要证明DABEAC,利用全等三角形的性质即可一一判断;详解:DAE=BAC=90,DAB=EACAD=AE,AB=AC,DABEAC,BD=CE,ABD=ECA,故正确,ABD+ECB=ECA+ECB=ACB=45,故正确,ECB+EBC=ABD+ECB+A

12、BC=45+45=90,CEB=90,即CEBD,故正确,BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1故正确,故选A点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题2、B【解析】试题解析:如图所示:设BC=x,在RtABC中,B=90,A=30,AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EMAD于M,则AM=AD=x,在RtAEM中,cosEAD=;故选B【点睛】本题考查了解直角三角形、含30

13、角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.3、D【解析】根据一次函数的性质结合题目中的条件解答即可.【详解】解:由题可得,水深与注水量之间成正比例关系,随着水的深度变高,需要的注水量也是均匀升高,水瓶的形状是圆柱,故选:D【点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.4、D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥故选D【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识5

14、、C【解析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案【详解】A、a3a2=a5,故A选项错误;B、a2=,故B选项错误;C、32=,故C选项正确;D、(a+2)(a2)=a24,故D选项错误,故选C【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键6、C【解析】根据线段上的等量关系逐一判断即可.【详解】A、AD-CD=AC,此选项表示正确;B、AB+BC=AC,此选项表示正确;C、AB=CD,BD-AB=BD-CD,此选项表示不正确;D、AB=CD,AD-AB=A

15、D-CD=AC,此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.7、D【解析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得【详解】该几何体的表面积为222+44+224=12+16,故选:D【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算8、A【解析】解:AE平分BAD,DAE=BAE;又四边形ABCD是平行四边形,ADBC,BEA=DAE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中,AGB=90,AB=6,BG=,A

16、G=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE:SCEF=(BE:CE)2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键9、A【解析】解:,解得x,解得x1,所以不等式组的解集为1x,所以不等式组的整数解为1,2,1故选A点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解)解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得

17、到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解10、C【解析】试题解析:抛物线的顶点坐标A(1,3),抛物线的对称轴为直线x=-=1,2a+b=0,所以正确;抛物线开口向下,a0,b=-2a0,抛物线与y轴的交点在x轴上方,c0,abc0,所以错误;抛物线的顶点坐标A(1,3),x=1时,二次函数有最大值,方程ax2+bx+c=3有两个相等的实数根,所以正确;抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,抛物线与x轴的另一个交点为(-2,0),所以错误;抛物线y1=ax2+bx+c与直线y2=mx+n(m0)交于A(1,3),B点(4,0)当1x4时,y2y1

18、,所以正确故选C考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点11、C【解析】四边形ABCD是正方形,AD=BC,DAB=ABC=90,BP=CQ,AP=BQ,在DAP与ABQ中, ,DAPABQ,P=Q,Q+QAB=90,P+QAB=90,AOP=90,AQDP;故正确;DOA=AOP=90,ADO+P=ADO+DAO=90,DAO=P,DAOAPO, ,AO2=ODOP,AEAB,AEAD,ODOE,OA2OEOP;故错误;在CQF与BPE中 ,CQFBPE,CF=BE,DF=CE,在ADF与DCE中, ,ADFDCE,SADFSDFO=SDCESDOF,即SAOD=S四边形O

19、ECF;故正确;BP=1,AB=3,AP=4,AOPDAP, ,BE=,QE=,QOEPAD, ,QO=,OE=,AO=5QO=,tanOAE=,故正确,故选C点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键12、D【解析】试题解析:含有两个未知数,不是整式方程,C没有二次项.故选D.点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】先根据相似三角形的判定得出ABCAED,再利用相似三角形的性质解答即可【

20、详解】 又A=A,ABCAED, BC=30,DE=1,故答案为1.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.14、(20,4) (10086,0) 【解析】首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案【详解】解:由题意可得:AO=,BO=4,AB=,OA+AB1+B1C2=+4=6+4=10,B2的横坐标为:10,B4的横坐标为:210=20,B2016的横坐标为:10=1B2C2=B4C4=OB=4,点B4的坐标为(20,4),B2017的横坐标为1+=10086,纵坐标为0,点B2017的坐

21、标为:(10086,0)故答案为(20,4)、(10086,0)【点睛】本题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题的关键15、4 【解析】解:(1)当a=1时,抛物线L的解析式为:y=x1,当y=1时,1=x1,x=,B在第一象限,A(,1),B(,1),AB=1,向右平移抛物线L使该抛物线过点B,AB=BC=1,AC=4;(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BKx轴于K,设OK=t,则AB=BC=1t,B(t,at1),根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,O(0,0),G(4t,0),设抛物线L3的解析式为

22、:y=a3(x0)(x4t),y=a3x(x4t),该抛物线过点B(t,at1),at1=a3t(t4t),t0,a=3a3,=,故答案为(1)4;(1)点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.16、m1【解析】根据根的判别式得出b24ac0,代入求出不等式的解集即可得到答案【详解】关于x的方程x22xm=0没有实数根,b24ac=(2)241(m)0,解得:m1,故答案为:m1【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0时,一元二次方程有两个不相等的实数根;当=

23、0时,一元二次方程有两个相等的实数根;当0时,一元二次方程没有实数根.17、1【解析】方程组两方程相加即可求出x+y的值【详解】,+得:1(x+y)=9,则x+y=1故答案为:1【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法18、 【解析】试题解析:四边形ABCD是矩形, AEBD, ABEADB, E是BC的中点, 过F作FGBC于G, 故答案为三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)直线CD与O相切;(2)O的半径为1.1【解析】(1)相切,连接OC,C为的中点,1=2,OA=OC,1=ACO,

24、2=ACO,ADOC,CDAD,OCCD,直线CD与O相切;(2)连接CE,AD=2,AC=,ADC=90,CD=,CD是O的切线,=ADDE,DE=1,CE=,C为的中点,BC=CE=,AB为O的直径,ACB=90,AB=2半径为1.120、(1)不可能;(2).【解析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,

25、所以某顾客该天早餐刚好得到菜包和油条的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率21、2【解析】根据实数的混合运算法则进行计算.【详解】解:原式= -( -1)+1=- +1+1=2【点睛】此题重点考察学生对实数的混合运算的应用,熟练掌握计算方法是解题的关键.22、 (1)见解析;(2)m=2【解析】(1)根据一元二次方程根的判别式进行分析解答即可;(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.【详解】(1)在方程x26mx+9m29=1中,=(6

26、m)24(9m29)=26m226m2+26=261方程有两个不相等的实数根;(2)关于x的方程:x26mx+9m29=1可化为:x(2m+2)x(2m2)=1,解得:x=2m+2和x=2m-2,2m+22m2,x1x2,x1=2m+2,x2=2m2,又x1=2x2,2m+2=2(2m2)解得:m=2【点睛】(1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x26mx+9m29=1的两个根是解答第2小题的关键.23、(1)W=;(2)李师傅

27、第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金【解析】(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题【详解】(1)设p与x之间的函数关系式为p=kx+b,则有,解得,即p与x的函数关系式为p=0.5x+7(1x15,x为整数),当1x10时,W=20(0.5x+7)(2x+20)=x2+16x+260,当10x15时,W=20(0.5x+7)40=20x+520,即W=;(2)当1x10时,W=x2+16x+260=(x8

28、)2+324,当x=8时,W取得最大值,此时W=324,当10x15时,W=20x+520,当x=10时,W取得最大值,此时W=320,324320,李师傅第8天创造的利润最大,最大利润是324元;(3)当1x10时,令x2+16x+260=299,得x1=3,x2=13,当W299时,3x13,1x10,3x10,当10x15时,令W=20x+520299,得x11.05,10x11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20(113)=160(元),即李师傅共可获得160元奖金【点睛】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关

29、系,确立函数解析式,利用函数的性质进行解答是关键.24、1【解析】分析:按照实数的运算顺序进行运算即可.详解:原式 =1 点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.25、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多【解析】(1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,(2)根据中位数和平均数即可解题.【详解】解:如图,销售额数量x人员4.0x4.95.0x5.96.0x6.97.0x7.98.0x8.99.0x10.0甲10121

30、5乙013024(1)估计乙业务员能获得奖金的月份有6个;(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多【点睛】本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.26、(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【解析】(1)利用待定系数法即可解决问题;(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况

31、讨论,用待定系数法即可解决问题.【详解】(1)把点A(0,2)代入抛物线的解析式可得,2=a+3,a=-1,抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,由解得x=点C的横坐标为MN=m-1,四边形MDEN是正方形,C(,m-1)把C点代入y=-(x-1)2+3,得m-1=-+3,解得m=3或-5(舍去)平移后的解析式为y=-(x-3)2+3,当点C在x轴的下方时,C(,1-m)把C点代入y=-(x-1)2+3,得1-m=-+3,解得m=7或-1(舍去)平移后的解析式为y=-(x-7)2+3综上:平移后的解析式为y=-(

32、x-3)2+3,或y=-(x-7)2+3.【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解.27、(1)证明见解析;(2)证明见解析;(3)【解析】(1)欲证明DB=DE.,只要证明DBE=DEB;(2)欲证明CF是O的切线.,只要证明BCCF即可;(3)根据S阴影部分S扇形SOBD计算即可【详解】解:(1)E是ABC的内心,BAE=CAE,EBA=EBC,BED=BAE+EBA,DBE=EBC+DBC,DBC=EAC,DBE=DEB,DB=DE(2)连接CDDA平分BAC,DAB=DAC,BD=CD,又BD=DF,CD=DB=DF,BCCF,CF是O的切线(3)连接OD O、D是BC、BF的中点,CF4, OD2. CF是O的切线,BOD为等腰直角三角形 S阴影部分S扇形SOBD 【点睛】本题考查数学圆的综合题,考查了圆的切线的证明,扇形的面积公式等,注意切线的证明方法,是高频考点

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 初中数学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁