2021-2022年七年级数学上期末试题(及答案).pdf

上传人:教**** 文档编号:86211044 上传时间:2023-04-14 格式:PDF 页数:18 大小:495.90KB
返回 下载 相关 举报
2021-2022年七年级数学上期末试题(及答案).pdf_第1页
第1页 / 共18页
2021-2022年七年级数学上期末试题(及答案).pdf_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2021-2022年七年级数学上期末试题(及答案).pdf》由会员分享,可在线阅读,更多相关《2021-2022年七年级数学上期末试题(及答案).pdf(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 一、一、选择题选择题 1下列调查中,最适合采用抽样调查的是()A了解全班同学每周体育锻炼的时间 B对市场上某一品牌电脑使用寿命的调查 C对旅客上飞机前的安检 D对“神州十一号”运载火箭发射前的零部件质量状况的调查 2已知 10 个数据:63,65,67,69,66,64,65,67,66,68,对这些数据编制频数分布表,那么数据在 64.567.5 之间的频率为:()A0.5 B0.6 C5 D6 3下面调查中,适合采用全面调查的是()A.了解中国诗词大会节目的收视率C了解我市初中生的视力情况 B.调查市民对“垃圾分类”的认同D疫情缓解学校复课调查学生体温 4.已知 x3 是关于 x 的一元

2、一次方程 mx+30 的解,则 m 的值为()A-1 B0 C1 D2 5.如果 x y,那么根据等式的基本性质,下列变形一定正确的是()A x y 0 B x y C x 2 y 2 D 3x y 5 5 3 4 ax x 4 6.使得关于 x 的方程 x 6 3 1 的解是正整数的所有整数a 的积为()A 21 B 12 C 6 D12 7.如图,棋盘上有黑、白两色棋子若干,如果在一条至少有两颗棋子的直线(包括图中没有画出的直线)上只有颜色相同的棋子,我们就称“同棋共线”图中“同棋共线”的线共有()A12 条 B10 条 C8 条 D3 条 8.如图,在线段 AD 上有两点 B,C,则图中

3、共有 条线段,若在车站 A、D 之间的线路中再设两个站点 B、C,则应该共印刷 种车票 A3,3 B3,6 C6,6 D6,12 9.如图,两条直线相交,有一个交点三条直线相交,最多有三个交点,四条直线相交,最多有六个交点,当有 10 条直线相交时,最多有多少个交点()A60 B50 C45 D40 10观察下列等式:717,7249,73343,742401,7516807,7611649,那么:71727372022 的末位数字是()A0 B6 C7 D9 11已知数a,b,c 的大小关系如图所示,下列选项中正确的有()个 abc 0 a b c 0 a b|c|1|a b|c a|b c

4、|2a|a|b|c A0 B1 C2 D3 12.如图所示,用经过 A、B、C 三点的平面截去正方体的一角,变成一个新的多面体,这个多面体的面数是()A8 B7 C6 D5 二、填空题二、填空题 13.某中学七年级甲、乙、丙三个班中,每班的学生人数都为40 名某次数学考试的成绩统计如下:(如图,每组分数含最小值,不含最大值)根据图、表提供的信息,则8090 分这一组人数最多的班是 班 14在数字248762128976 中,出现“2”的频率是 .15.甲 乙两人检修一条长1000m 的煤气管道,甲每小时检修100m,乙每小时检修 150m 现在两人合作,需要 小时完成 16.我们听过龟兔赛跑的

5、故事,都知道乌龟最后战胜了小白兔如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟 600 米时,以 85 米/分的速度奋起直追,而乌龟仍然以5 米/分的速度爬行,那么小白兔需要 分钟就能追上乌龟 17.已知射线OC 在AOB 的内部,射线OE 平分AOC,射线OF 平分COB (1)如图 1,若AOB 100,AOC 30,则EOF 度;(2)如图 2,若AOB ,AOC ,若射线OC 在AOB 的内部绕点O 旋转,求EOF 的大小;(3)在(2)的条件下,若射线OC 在AOB 的外部绕点O 旋转(旋转中AOC、COB 均是指小于180 的角),其余条件不变,请借助图3 探究EOF 的大小,求

6、 EOF 的大小 18.如图是一个正方体的展开图,A x2,B 2x2 1,C 2x 2,D 2x 1,且相对两个面所表示的整式的和都相等,则E F 19如果|a2|+(b+3)2=0,那么 a+b=20.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有 个 三、解答题三、解答题 21.某市为提高学生参与体育活动的积极性,2019 年 5 月围绕“你最喜欢的体育运动项目 购票张数 150张 5190张 90张以上 每张票的价格 13元 11元 9元(只写一项)”这一问题,对初一学生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整)

7、请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数(3)请将条形统计图补充完整(4)若该市 2018 年约有初一学生 20000,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人 22.公园门票价格规定如下表:某校七年级一、二两个班共 100 人去游园,七年一班有 40 多人,不足 50 人经估算,如果两个班都以班为单位购票,则一共应付1196 元问:(1)两个班各有多少学生;(2)如果两个班联合起来,作为一个团体购票,可省多少元;(3)如果七年一班单独组织去游园,作为组织

8、者的你如何购票才最省钱 23.数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休”数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来从而实现优化解题途径的目 的请你利用“数形结合”的思想解决以下的问题:(1)如图 1:射线OC 是AOB 的平分线,这时有数量关系:AOB (2)如图 2:AOB 被射线OP 分成了两部分,这时有数量关系:AOB (3)如图 3:直线 AB 上有一点 M,射线MN 从射线 MA 开始绕着点M 顺时针旋转,直到与射线MB 重合才停止 请直接回答AMN与BMN 是如何变化的?AMN与BMN 之间有什么关系?请说明理由 24.某大型商场销售一种茶

9、具和茶碗,茶具每套定价200 元,茶碗每只定价 20 元,“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案,方案一:买一套茶具送一只茶碗;方案二,茶具和茶碗按定价的九五折付款,现在某客户要到商场购买茶具30 套,茶碗x 只(x30)(1)若客户按方案一,需要付款 元;若客户按方案二,需要付款 元(用含 x 的代数式表示)(2)若 x40,试通过计算说明此时哪种购买方案比较合适?(3)当 x40,能否找到一种更为省钱的方案,如果能,写出你的方案,并计算出此方案应付钱数;如果不能,说明理由 25.若a,b 是整数且满足:|a 1|b 1|1,求a b 的值 26.如图,是由大小相

10、同的小立方块搭成的几何体,请在方格里画出从左面、上面观察这个图形所看到的形状图 【参考答案】*试卷处理标记,请不要删除 一、选择题一、选择题 1B 解析:B【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查【详解】A.了解全班同学每周体育锻炼的时间,适合全面调查;B.对市场上某一品牌电脑使用寿命的调查,有破坏性,适合抽样调查;C.对旅客上飞机前的安检,需要全面调查;D.对“神州十一号”运载火箭发射前的零部件质量状况的调查,需要全面调查;【点睛】本题主要考查了全面调查及抽样调查,解题的关键是熟记由普查得

11、到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似 2B 解析:B【分析】频数 首先正确数出在 64.567.5 这组的数据;再根据频率、频数的关系:频率=数据总和,进 行计算【详解】解:其中在 64.567.5 组的有 65,67,66,65,67,66 共 6 个,6 0.6 则 64.567.5 这组的频率是:10 故选择:B 【点睛】本题考查频率、频数的关系,解题的关键是熟记求频率的公式 3D 解析:D【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选

12、择普查方 式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查【详解】解:A、了解中国诗词大会节目的收视率,适合抽样调查;B、调查市民对“垃圾分类”的认同,适合抽样调查;C、了解我市初中生的视力情况,适合抽样调查;D、疫情缓解学校复课调查学生体温,适合全面调查;故选:D【点睛】此题主要考查了全面调查与抽样调查,要熟练掌握,如何选择调查方法要根据具体情况而定 4A 解析:A【分析】把 x3 代入方程计算即可求出m 的值【详解】x 解:把x3 代入方程得:3m30,解得:m-1,故选:A【点睛】此题考查了一元一次方程的解,方程的

13、解即为能使方程左右两边相等的未知数的值 5B 解析:B【分析】利用等式的性质变形得到结果,即可作出判断【详解】解:A、由 x=y,得到 x-y=0,原变形错误,故此选项不符合题意;B、由 x=y,得到 y,原变形正确,故此选项符合题意;5 5 C、由 x=y,得到 x-2=y-2,原变形错误,故此选项不符合题意;D、由 x=y,得到 3x=3y,原变形错误,故此选项不符合题意;故选:B【点睛】本题考查了等式的性质,熟练掌握等式的性质是解本题的关键 6B 解析:B【分析】先解该一元一次方程,然后根据 a 是整数和 x 是正整数即可得到 a 的值,从而得到答案【详解】4 ax x 4 解:x 6

14、3 1 去分母得,6x 4 ax 2x 4 6 去括号得,6x 4 ax 2x 8 6 整理得,4 ax 6 6 x 4 a,当 a 2 时 x 1,当 a 1 时 x 2,当 a 2 时 x 3,当 a 3时 x 6,这些整数a 的积为2123 12,故选:B【点睛】本题考查了一元一次方程的解法和代数式求值,熟练掌握解一元一次方程是解题的关键 7B 解析:B【分析】把问题转化两白棋子共线和两黑棋子共线两种情形求解即可【详解】结合图形,从横行、纵行、斜行三个方面进行分析;一条直线上至少有两颗棋子并且颜色相同,如下,共有 10 条:故选B【点睛】本题考查了新定义问题,准确理解新定义的内涵,并灵活

15、运用分类的思想是解题的关键 8D 解析:D【分析】从左到右的顺序依次确定线段,车票有方向性,是线段条数的2 倍.【详解】从 A 开始的线段有 AB,AC,AD 三条;从B 开始的线段有 BC,BD 二条;从 C 开始的线段有 CD 一条;所以共有 6 条线段;车票从A 到 B 和从B 到 A 是不同的,所以车票数恰好是线段条数的2 倍,所以需要 12 种车票,故选 D.【点睛】本题考查了线段的定义,数线段,以及线段与生活中的车票的关系,熟练数线段,理解车票数是线段数的 2 倍是解题的关键.9C 解析:C【分析】根据交点个数的变化规律:n 条直线相交,最多有 1+2+3+(n1)=计算求解即可

16、n(n 1)2 个交点,然后 c b,【详解】解:两条直线相交,最多一个交点,三条直线相交,最多有三个交点,1+2=3=3(3 1),2 四条直线相交,最多有六个交点,1+2+3=6=4(4 1),2 n 条直线相交,最多有 1+2+3+(n1)=n(n 1)个交点,2 故 10 条直线相交,最多有 1+2+3+9=故选:C【点睛】10(101)2 =59=45 个交点,本题考查了图形的变化规律探究,在相交线的基础上,着重培养学生的观察,猜想归纳的能力,掌握从特殊到一般的方法,找出变化规律是解答的关键 10B 解析:B【分析】先根据已知算式得出规律,再求出即可【详解】解:71=7,72=49,

17、73=343,74=2401,75=16807,76=117649,20224=5052,505(7+9+3+1)+7+9=10116,71+72+73+72022 的末位数字是 6,故选:B【点睛】本题考查了尾数特征和数字变化类,能根据已知算式得出规律是解此题的关键 11C 解析:C【分析】根据数轴可以得到 ab0,|c|a|b|,再根据有理数的乘除法法则,有理数的加法法则及绝对值的性质即可得出答案【详解】解:由数轴可得 ab0,|c|a|b|,abc 0,故错误;cb,b-c0,a0,a b c 0,故错误;ab0,b 1 c 1 a b|c|111 1|a|b|c,a a0,a-b0,|

18、a-b|=b-a,a0,且|c|a|,c+a0,|c+a|=c+a,cb0,b-c0,|b-c|=c-b,|a b|c a|b c|b a c a c b 2a,故正确 两个正确 故选 C【点睛】本题考查了利用数轴判断式子的正负,有理数的运算法则,绝对值的性质等知识解题的关键是灵活运用所学知识解决问题 12B 解析:B【分析】截去正方体一角变成一个多面体,这个多面体多了一个面,棱数不变,少了一个顶点【详解】解:由图可得,多面体的面数是 7 故选B【点睛】本题考查了正方体的截面,关键是明确正方体的面数,顶点数,棱的条数,形数结合,求出截去一个角后得到的几何体的面数,顶点数,棱的条数 二、填空题二

19、、填空题 13.甲【分析】根据题意和统计图表中的信息可以得到甲乙丙三个班中 8090 分这一组人数然后比较大小即可解答本题【详解】解:甲班 8090 分这一组有402581213(人)乙班 8090 分这一组有 解析:甲【分析】根据题意和统计图表中的信息,可以得到甲、乙、丙三个班中8090 分这一组人数,然后比较大小,即可解答本题【详解】解:甲班 8090 分这一组有 402581213(人),乙班 8090 分这一组有 40(15%10%35%20%)12(人),丙班 8090 分这一组有 11 人,131211,8090 分这一组人数最多的是甲班,故答案为:甲【点睛】本题考查频数分布直方图

20、、扇形统计图、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答 14.【分析】在这组数据中 2 出现的次数占全部数字个数的比率【详解】解:因为 12 个数字中 2 出现了三次所以出现的频率是=故答案为:【点睛】本题考查频率解题关键是熟练掌握定义:一组数据中某个数据出现的次数占总数 1 解析:4【分析】在这组数据中,2 出现的次数占全部数字个数的比率,【详解】3 1 解:因为 12 个数字中,“2”出现了三次,所以出现“2”的频率是12=4.1 故答案为:4.【点睛】本题考查频率,解题关键是熟练掌握定义:一组数据中某个数据出现的次数占总数据个数的百分比叫频率 154【分析】设两人合作

21、需要 x 小时根据题意列出方程计算即可;【详解】设 两人合作需要 x 小时则解得:故答案是 4【点睛】本题主要考查了一元一次方程的工程问题准确计算是解题的关键 解析:4【分析】设两人合作需要x 小时,根据题意列出方程计算即可;【详解】设两人合作需要x 小时,则 100 x 150 x 1000,解得:x 4 故答案是 4【点睛】本题主要考查了一元一次方程的工程问题,准确计算是解题的关键 165【分析】在追及路程问题中注意等量关系:小白兔追上乌龟所走的路程=乌龟所走的路程+落后的路程【详解】解:设小白兔大概需要 x 分钟就能追上乌龟根据题意可得 85x=5x+600 解得 x=75 那么小白兔大

22、概需 解析:5【分析】在追及路程问题中,注意等量关系:小白兔追上乌龟所走的路程=乌龟所走的路程+落后的路程【详解】解:设小白兔大概需要x 分钟就能追上乌龟,根据题意可得 85x=5x+600 解得 x=7.5 那么小白兔大概需要 7.5 分钟就能追上乌龟 故答案为:7.5【点睛】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解 17(1)50;(2);(3)当射线只有 1 条在外面时;当射线 OEOF 都在 AOB 外部时【分析】(1)先求解再利用角平分线的性质求解从而可得答案;(2)由射线平分射线平分可得可得从而可得答案;(3)分

23、以下 解析:(1)50;(2)EOF 1 ;(3)当射线OE,OF 只有 1 条在AOB 外面 2 时,EOF 1 ;当射线 OE,OF 都在 AOB 外部时,EOF 180 1 2 2【分析】(1)先求解BOC,再利用角平分线的性质求解EOC,FOC,从而可得答案;(2)由射线OE 平分AOC,射线OF 平分COB,可得EOC 1 AOC,2 COF 1 COB,可得EOF 1 AOC BOC 1 AOB,从而可得答案;2 2 2(3)分以下两种情况:当射线OE,OF 只有 1 条在AOB 外部时,如图 3,当射线OE,OF 都在AOB 外部时,如图 3,再利用角平分线的性质可得:COE 1

24、 AOC,COF 1 BOC,结合角的和差可得答案 2 2【详解】解:(1)AOB 100,AOC 30,BOC AOB AOC 100 30 70,射线OE 平分AOC,射线OF 平分COB,EOC 1 AOC 15,FOC 1 BOC 35,2 2 EOF EOC FOC 15 35 50,故答案为:50(2)射线OE 平分AOC,射线OF 平分COB EOC 1 AOC,COF 1 COB 2 2 EOF EOC COF 1 AOC BOC 2 1 AOB,2 AOB ,EOF 1 .2 (3)分以下两种情况:当射线OE,OF 只有 1 条在AOB 外部时,如图 3,同理可得:COE 1

25、 AOC,COF 1 BOC,2 2 EOF COF COE 1 BOC AOC 1 AOB 1 ,2 2 2 当射线OE,OF 都在AOB 外部时,如图 3,同理可得:COE 1 AOC,COF 1 BOC,2 2 EOF EOC COF 1 AOC BOC 1 360 AOB 180 1 ,2 2 2 综上所述:当射线OE,OF 只有 1 条在AOB 外面时,EOF 都在AOB 的外部时,EOF 180 1 2 1 ;当射线OE,OF 2 【点睛】本题考查的是角的和差运算,角平分线的定义,角的动态定义,分类思想的运用,掌握以上知识是解题的关键 182x+3【分析】根据正方体表面展开图的特征

26、判断出相对的面再根据相对两 个面所表示的整式的和都相等进而求出 E+F 的结果【详解】解:由正方体表面展开图的相间 Z 端是对面可知标注 A 与 D 的面是相对的标注 B 与 F 的 解析:2x+3【分析】根据正方体表面展开图的特征判断出相对的面,再根据相对两个面所表示的整式的和都相等,进而求出 E+F 的结果【详解】解:由正方体表面展开图的“相间、Z 端是对面”可知,标注“A”与“D”的面是相对的,标注“B”与“F”的面是相对的,标注“C”与“E”的面是相对的,又因为相对两个面所表示的整式的和都相等,A+D=B+F=C+E,E=A+D-C;F=A+D-B E+F=2(A+D)-B-C=2(x

27、2+2x+1)-(2x2+1)-(2x-2)=2x2+4x+2-2x2-1-2x+2=2x+3,故答案为:2x+3【点睛】本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是解决问题的关键,掌握去括号、合并同类项法则是正确计算的前提 19【分析】利用绝对值和平方式的非负性求出 a 和 b 的值即可算出结果【详 解】解:且 即 故答案是:【点睛】本题考查绝对值和平方式的非负性解题的关键是掌握绝对值和平方式的非负性 解析:1【分析】利用绝对值和平方式的非负性求出 a 和 b 的值,即可算出结果【详解】解:a 2 0,b 32 0,且 a 2 b 32 0,a 2 0,b 3 0,即a 2,b

28、3,a b 2 3 1 故答案是:1【点睛】本题考查绝对值和平方式的非负性,解题的关键是掌握绝对值和平方式的非负性 205 三、解答题三、解答题 21(1)500;(2)43.2;(3)见解析;(4)2400 人【分析】(1)用喜欢健身操的学生数除以其所占的百分比即可求得样本容量;(2)用周角乘以最喜欢足球运动的学生所占的百分比即可求得其圆心角的度数;(3)求得喜欢篮球的人数后补全统计图即可;(4)用总人数乘以喜欢足球的人数占总人数的百分比即可求解【详解】解:(1)10020%=500,本次抽样调查的样本容量是 500;60(2)360 500=43.2,扇形统计图中“最喜欢足球运动”的学生数

29、所对应的扇形圆心角度数为43.2;60(3)喜爱篮球的有:500(1-20%-18%-20%-500 100%)=150 人,补全统计图如下:60(4)20000 500 =2400(人)全市本届学生中“最喜欢足球运动”的学生约有 2400 人【点睛】此题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为 1,直接反映部分占总体的百分比大小 22(1)七年级一班 48 人,二班有 52 人;(2)可省 296 元;(3)七一班单独组织去游园,直接购买 51 张票更省钱【

30、分析】(1)设七年级一班有x 人,根据共付 1196 元构建方程即可解决问题(2)根据题意和表格中的数据可以解答本题(3)计算购买 51 张票的费用与原来费用比较即可解决问题【详解】解:(1)设七年级一班 x 人,依题意有 13x+11(100 x)1196,解得 x48,则 100 x1004852 答:七年级一班 48 人,二班有 52 人;(2)119610091196900296(元)故可省 296 元;(3)七(1)班单独组织去游园,如果按实际人数购票,需花费:4813624(元),若购买 51 张票,需花费:5111561(元),561624,七一班单独组织去游园,直接购买51 张

31、票更省钱【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用方程的思想解答 23(1)2AOC(答案不唯一);(2)AOP BOP;(3)AMN逐渐增 大,BMN 逐渐减小;AMN BMN 180,见解析【分析】(1)根据角平分线定义容易得出结论;(2)根据图形解答;(3)由射线 MN 从射线 MA 开始绕着点M 顺时针旋转可知AMN逐渐增大,BMN 逐渐减小;由 AMB 是平角即可得出结论【详解】解:(1)射线OC 是AOB 的平分线,AOB 2AOC 2COB,故答案为:2AOC(或2COB);(2)由图可知,AOB AOP BOP,故答案为:AOP

32、 BOP;(3)AMN逐渐增大,BMN 逐渐减小;AMN BMN 180 证明:AMB 180,AMN BMN AMB,AMN BMN 180 【点睛】本题考查了角平分线定义,角的有关计算,注意利用数形结合的思想 24(1)(20 x+5400);(19x+5700);(2)方案一更合适,见解析;(3)可以有更合适的购买方式,按方案一购买 30 套茶具和 30 只茶碗,按方案二购买剩余10 只茶碗,此方案应付钱数为 6190 元【分析】(1)由题意分别求出两种方案购买的费用即可;(2)将 x40 分别代入(1)中所求的代数式,再比较哪个更优惠即可;(3)两种方案一起购买,按方案一购买30 套茶

33、具和 30 只茶碗,按方案二购买剩余 10 只茶碗,依此计算即可求解【详解】解:(1)若客户按方案一,需要付款 30200+20(x30)(20 x+5400)元;若客户按方案二,需要付款 302000.95+20 x0.95(19x+5700)元 故答案为:(20 x+5400);(19x+5700);(2)当 x40 时,方案一:20 x+5400800+54006200,方案二:19x+5700760+57006460,因 为 62006460,所以方案一更合适;(3)可以有更合适的购买方式 按方案一购买 30 套茶具赠 30 只茶碗,需要 200306000(元),按方案二购买剩余 1

34、0 只茶碗,需要 10200.95190(元),共计 6000+1906190(元)故此方案应付钱数为 6190 元【点睛】本题考查了列代数式及代数式求值问题,得到两种优惠方案付费的关系式是解答本题的关键 251 或 3【分析】根据数轴上两点间的距离及绝对值的意义,结合题意确定a 与 b 的值,然后代入求解【详解】解:|a 1|表示数轴上表示a 的点与 1 的距离,|b 1|表示数轴上表示b 的点与-1 的距离又|a 1|b 1|1 且a,b 是整数|a 1|=0,|b 1|1 或|a 1|=1,|b 1|0 由此解得:当 a=2,b=-1 时,a b 2 (1)3;当 a=0,b=-1 时,a b 0 (1)1;当 a=1,b=0 时,a b 1 0 1;当 a=1,b=-2 时,a b 1(2)3;综上,ab 的值为 1 或 3【点睛】本题考查绝对值的意义及有理数的减法运算,正确理解题意,采用数形结合思想解题是关键 26见解析【分析】由已知条件可知,从左面看有 3 列,每列小正方数形数目从左往右分别为3,2,1,从上面看有 3 列,每列小正方形数目从左往右分别为3,2,1据此可画出图形【详解】解:如图所示:【点睛】本题考查简单组合体的三视图,“长对正,宽相等,高平齐”是画三视图的基本要求

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁