《小四数学第12讲:流水行船(教师版).pdf》由会员分享,可在线阅读,更多相关《小四数学第12讲:流水行船(教师版).pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中高考复习精品,为中高考保驾护航!祝您金榜提名!爱心 责任 奉献第 12讲流水行船1.问题简介。船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题(又叫流水问题)。2.基本公式。逆水船速=净水船速-水流速度;顺水船速=净水船速+水流速度。3.推论。静水船速=(顺水船速+逆水船速)2;水流速度=(顺水船速-逆水船速)2。4.问题引申。除此以外,在流水行船问题中还经常运用到一条性质:河流漂流物体速度=水流速度。在相同的一条河流中,甲乙两船的速度有如下数量关系。甲船顺(逆)水速度+乙船逆(顺)水速度=甲船静水船速+乙船静
2、水船速。同样的在追及问题也有类似的数量关系:甲船顺(逆)水速度乙船顺(逆)水速度=甲船静水船速乙船静水船速。第一流水行程问题中静水速度,水流速度,顺水速度,逆水速度之间的关系;第二分析与判断流水行程中的路程速度与时间关系.;第三流水相遇与追及问题中速度和与速度差与水速无关的运用。例 1.甲、乙两船在静水中的速度分别为33 千米/小时和 25 千米/小时,两船从相距232 千米的两港同时出发相向而行,几小时后相遇?如果同向而行,甲船在后乙船在前,几小时后甲船可以追上乙船?考点:船在静水中的问题。分析:此题属于流水行船的静水问题,不需要考虑水流的速度,第一问求两船相遇的时间,中高考复习精品,为中高
3、考保驾护航!祝您金榜提名!爱心 责任 奉献可直接用距离除以两船的速度之和即可;第二问求几小时后甲船追上乙船,用他们出发时的距离除以它们的速度差即可。解答:相遇的时间:232(33+25)=8(小时);甲船追上乙船的时间:232(33-25)=29(小时)。点评:难度较为简单,考查基本内容。例 2.一艘轮船在两个港口间航行,水速为每小时6 千米,顺水下行需要4 小时,返回上行需要 7 小时,求:这两个港口之间的距离。考点:船在顺水中的问题、船在逆水中的问题。分析:此题中既包含顺水问题,有包含逆水问题,首先我们考虑,两港口之间的距离=(船在静水中的速度+水流速度)时间1=(船在静水中的速度-水流速
4、度)时间2。通过变换我们可以发现,船在静水中的速度=水流速度(时间1+时间 2)(时间2-时间 1)。两港口间距离=(船在静水中的速度+水流的速度)时间1。解答:船在静水中船速=6(7+4)(7-4)=22(千米/时),两港口间距离=(22+6)4=112(千米/时)。点评:难度很大,考查变换的能力,综合解决问题的能力。例 3.某船在静水中每小时行18 千米,水流速度是每小时2 千米。此船从甲地逆水航行到乙地需要 15 小时。求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?考点:船在顺水中的问题、船在逆水中的问题。分析:由题意根据公式,可知甲、乙两地的路程=(船在静水中的速度-水
5、流的速度)时间;船从乙地回到甲地是顺水而行,因此从乙地到甲地需要的时间=(船在静水中的速度+水流的速度)时间。解答:此船逆水航行的速度是:18-2=16(千米/小时),甲乙两地的路程是:1615=240(千米)此船顺水航行的速度是:18+2=20(千米/小时),此船从乙地回到甲地需要的时间是:24020=12(小时)。点评:此题难度适中,解答稍微复杂。例 4.某船在静水中的速度是每小时15 千米,它从上游的甲港开往下游的乙港共用8 小时。已知水速为每小时3 千米。此船从乙港返回甲港需要多少小时?考点:船在顺水中的问题、船在逆水中的问题。分析:知道船在静水的船速、水流的速度和时间,可以求出甲港和
6、乙港的距离=(船在静水中的速度+水流的速度)时间,从乙港返回甲港是逆水而行,因此用甲港和乙港的距离除以船在逆水中的速度,就是从乙港返回甲港需要的时间。解答:此船顺水的速度是:15+3=18(千米/小时)甲乙两港之间的路程是:188=144(千米)此船逆水航行的速度是:15-3=12(千米/小时)此船从乙港返回甲港需要的时间是:14412=12(小时)综合算式:(15+3)8(15-3)=14412=12(小时)。点评:难度适中,考察基本知识的运用能力。例 5.甲、乙两个码头相距144 千米,一艘汽艇在静水中每小时行20 千米,水流速度是每小时 4 千米。求由甲码头到乙码头顺水而行需要几小时,由
7、乙码头到甲码头逆水而行需要多少小时?考点:船在顺水中的问题、船在逆水中的问题。分析:已知两个码头的距离,船在静水中的速度以及水流的速度,用两个码头的距离除以船在顺水中的速度就是由甲码头到乙码头需要的时间,用两个码头的距离除以船在逆水中的速度就是由乙码头到甲码头需要的时间。解答:顺水而行的时间是:144(20+4)=6(小时)逆水而行的时间是:144(20-4)=9(小时)。点评:难度较低,考察基本知识的掌握。中高考复习精品,为中高考保驾护航!祝您金榜提名!爱心 责任 奉献A 1.甲、乙两港间的水路长208 千米,一只船从甲港开往乙港,顺水8 小时到达,从乙港返回甲港,逆水13 小时到达,求船在
8、静水中的速度和水流速度。考点:船在顺水中的问题、船在逆水中的问题。分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。解答:解:顺水速度:2088=26(千米/小时),逆水速度:20813=16(千米/小时),船速:(26+16)2=21(千米/小时),水速:(2616)2=5(千米/小时),答:船在静水中的速度为每小时21 千米,水流速度每小时5 千米。点评:难度适中,解答过程稍微复杂。2.某船在静水中的速度是每小时15 千米,它从上游甲地开往下游乙地共花去了8 小时,水速
9、每小时3 千米,问从乙地返回甲地需要多少时间?考点:船在顺水中的问题、船在逆水中的问题。分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。解答:从甲地到乙地,顺水速度:15+3=18(千米/小时),甲乙两地路程:188=144(千米),从乙地到甲地的逆水速度:153=12(千米/小时),返回时逆行用的时间:144 1212(小时)。点评:难度较低,考察基本知识。3.甲、乙两港相距360 千米,一轮船往返两港需35 小时,逆流航行比顺流航行多花了5小时。现在有一机帆船,静水中速度是每小时12 千米,这机帆船往返两港要多少小时?考点:船在顺水中的问题、船在逆水中的
10、问题。分析:要求帆船往返两港的时间,就要先求出水速.由题意可以知道,轮船逆流航行与顺流航行的时间和与时间差分别是35 小时与 5小时,用和差问题解法可以求出逆流航行和顺流航行的时间.并能进一步求出轮船的逆流速度和顺流速度.在此基础上再用和差问题解法求出水速。解答:轮船逆流航行的时间:(35+5)2=20(小时),顺流航行的时间:(35 5)2=15(小时),轮船逆流速度:36020=18(千米/小时),顺流速度:36015=24(千米/小时),水速:(2418)2=3(千米/小时),帆船的顺流速度:12315(千米/小时),帆船的逆水速度:123=9(千米/小时),帆船往返两港所用时间:360
11、15 360924+40=64(小时)。点评:难度较大,解答过程复杂。4.小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2 千米,假定小船的速度是每小时4 千米,水流速度是每小时2 千米,那么他们追上水壶需要多少时间?考点:船在顺水中的问题、船在逆水中的问题。分析:此题是水中追及问题,已知路程差是2 千米,船在顺水中的速度是船速+水速.水壶飘流的速度只等于水速,所以速度差=船顺水速度-水壶飘流的速度=(船速+水速)-水速=船速。解答:路程差船速=追及时间,24=0.5(小时)。点评:难度较低,考察基本知识。5.甲、乙两船在静水中速度分别为每小时2
12、4 千米和每小时32 千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?考点:船在顺水中的问题、船在逆水中的问题。分析:此题属于流水行船的静水问题,不需要考虑水流的速度,第一问求两船相遇的时间,可直接用距离除以两船的速度之和即可;第二问求几小时后甲船追上乙船,用他们出发时的距离除以它们的速度差即可。中高考复习精品,为中高考保驾护航!祝您金榜提名!爱心 责任 奉献解答:相遇时用的时间:336(24+32)=33656=6(小时);追及用的时间(不论两船同向逆流而上还是顺流而下):336(32 24)42(小时)。点评:难度适
13、中。B 6两个码头相距192 千米,一艘汽艇顺水行完全程需要8 小时,已知这条河的水流速度为4 千米/小时,求逆水行完全程需几小时?考点:船在顺水中的问题、船在逆水中的问题。分析:已知路程和顺水行完全程的时间,又知道水流的速度,用路程除以时间就船在顺水中的速度,船在顺水中的速度减去水流速度,就是船在静水中的速度,再减去水流的速度,就是船在逆水中的速度,用路程除以船在逆水中的速度就是逆水行完全程的时间。解答:船在顺水中的速度:1928=24(千米/时),船在静水中的速度:24-8=16(千米/时),逆水行完全程的时间:192(16-8)=24(小时)点评:难度适中。7两个码头相距432 千米,轮
14、船顺水行这段路程需要16 小时,逆水每小时比顺水少行9千米,逆水比顺水需要多用几个小时行完全程?考点:船在顺水中的问题、船在逆水中的问题。分析:船在顺水中的速度=路程轮船顺水行完这段路程的时间,船在逆水中的速度=船在顺水中的速度-9 千米。求出逆水而行需要的时间,用它减去顺水而行的时间即可。解答:船在顺水中的速度:43216=27(千米/时),船在逆水中的速度:27-9=18(千米/时),逆水而行需要的时间:43218=24(小时),逆水比顺水需要多用的时间:24-16=8(小时)点评:难度适中,考察基本知识。C 8.A、B两码头间河流长为90 千米,甲、乙两船分别从A、B码头同时启航。如果相
15、向而行3小时相遇,如果同向而行15 小时甲船追上乙船,求两船在静水中的速度。考点:船在顺水中的问题、船在逆水中的问题。分析:先求出两船的速度和,再求出两船的速度差,两个速度相加再除以2 就是甲船的速度,进而可以求出乙船的速度。解答:两船的速度和:90 3=30(千米/时),两船的速度差:90 15=6(千米/时),甲船的速度:(30+6)2=18(千米/时),乙船的速度:30-18=12(千米/时)点评:难度适中。9.乙船顺水航行2 小时,行了120 千米,返回原地用了4 小时。甲船顺水航行同一段水路,用了 3 小时.甲船返回原地比去时多用了几小时?考点:船在顺水中的问题、船在逆水中的问题。分
16、析:先出乙船的在顺水中的速度和在逆水中的速度,再根据公式求出水流的速度,路程除以甲船顺水而行的时间,就是甲船在顺水中的速度,最后用路程除以甲船逆水中的速度即可。解答:乙船顺水中的速度:1202=60(千米/时),乙船逆水中的速度:1204=30(千米/时),水流的速度:(60-30)2=15(千米/时),甲船在顺水中的速度:1203=40(千米/时),甲船在逆水中的速度:40-15-15=10(千米/时),甲船逆水而行的时间:12010=12(小时),甲船返回原地比去时多用的时间:12-3=9(小时)点评:难度较大,考察知识的掌握程度。中高考复习精品,为中高考保驾护航!祝您金榜提名!爱心 责任
17、 奉献1.甲、乙之间的水路是234 千米,一只船从甲港到乙港需9 小时,从乙港返回甲港需13 小时,问船速和水速各为每小时多少千米?考点:船在顺水中的问题、船在逆水中的问题。分析:先求出船在顺水中的速度和逆水中的速度,再用二者作和除2 得出船在静水中的速度,再用两者作差除2 求出水流的速度。解答:船的顺水速度:2349=26(千米/时),船的逆水速度:23413=18(千米/时),船的速度:(26+18)2=22(千米/时),水速:(26-18)2=4(千米/时)或 26-22=4(千米/时)。点评:难度适中,解答过程较为复杂。2.一艘每小时行25 千米的客轮,在大运河中顺水航行140 千米,
18、水速是每小时3 千米,需要行几个小时?考点:船在顺水中的问题、船在逆水中的问题。分析:此题是求在顺水中船行140 千米需要的时间,只需 140 千米除以船速和水速的和即可。解答:航行需要的时间:140(25+3)=5(小时)。点评:难度较低,考察基本知识。3.一只小船静水中速度为每小时30 千米,在176 千米长河中逆水而行用了11 个小时.求返回原处需用几个小时。考点:船在顺水中的问题、船在逆水中的问题。分析:用路程除以时间求出逆水中的船速,求出顺水中的船速,用路程除以顺水中的船速即可。解答:逆水的速度:176 11=16(千米/时),水速:30-16=14(千米/时),顺水速度:30+14
19、=44(千米/时),返回需要的时间(顺水航行的时间):176 44=4(小时)。点评:难度适中,考察知识的灵活运用。4.一只船在河里航行,顺流而下每小时行18 千米。已知这只船下行2 小时恰好与上行3小时所行的路程相等,求船速和水速。考点:船在顺水中的问题、船在逆水中的问题。分析:先求出逆水中的船速,然后根据公式分别求出船速和水速。解答:顺流而下的路程:182=36(千米),逆流的速度:363=12(千米/时),船速:(18+12)2=15(千米/时),水速:(18-12)2=3(千米/时)。点评:难度较低,考察基本知识。5.两个码头相距352 千米,一船顺流而下,行完全程需要11 小时.逆流
20、而上,行完全程需要16 小时,求这条河水流速度。考点:船在顺水中的问题、船在逆水中的问题。分析:用路程除以时间,分别求出顺水中的船速和逆水中的船速,然后根据公式求出河水速度。解答:顺水速度:35211=32(千米/时),逆水速度:35216=22(千米/时),水速:(32-22)2=5(千米/时)。点评:难度较低,考察基本知识。6.A、B两码头间河流长为90 千米,甲、乙两船分别从A、B码头同时启航。如果相向而行3小时相遇,如果同向而行15 小时甲船追上乙船,求两船的速度。(不可靠水的速度)考点:船在顺水中的问题、船在逆水中的问题。分析:利用路程除以时间分别求出两船速度之和,以及速度之差,然后
21、相加除2 求出甲船的速度,然从速度之和中减去甲船的速度,求出乙船的速度。解答:相遇过程中速度和:903=30(千米/时)追及过程中速度差:9015=6(千米/时)甲船的速度:(30+6)2=18(千米/时),乙船的速度:30-18=12(千米/时)。中高考复习精品,为中高考保驾护航!祝您金榜提名!爱心 责任 奉献点评:难度较低。7、乙船顺水航行2 小时,行了 120 千米,返回原地用了4 小时。甲船顺水航行同一段水路,用了 3 小时.甲船返回原地比去时多用了几小时?考点:船在顺水中的问题、船在逆水中的问题。分析:先根据乙船求出水速,然后再求出甲船在逆水中的速度,用甲船在逆水中航行的时间减去甲船
22、在顺水中航行的时间即可。解答:乙船顺水速度:1202=60(千米/时)乙船逆水速度:1204=30(千米/时),水速:(60-30)2=15(千米/时),甲船顺水速度:120 3=40(千米/时),甲船逆水速度:40-2 15=10(千米/时),甲船返回比去时多:120 103=9(小时)。点评:难度适中,解答过程较为复杂。1.两港相距560 千米,甲船往返两港需105 小时,逆流航行比顺流航行多用了35 小时。乙船的静水速度是甲船的静水速度的2 倍,那么乙船往返两港需要多少小时?考点:船在顺水中的问题、船在逆水中的问题。分析:先求出甲船在顺水和逆水中航行的时间,再求出在顺水和逆水中的船速,根
23、据公式求出甲船在静水中的速度和水流的速度,由此计算出乙船在顺水中的船速和逆水中的船速,最后求出乙船往返两港需要的时间。解答:甲船顺水航行的时间:(105-35)2=35(小时),甲船在逆水中的时间:35+35=70(小时),甲船在顺水中的船速:56035=16(千米/时),甲船在逆水中的船速:56070=8(千米/时),甲船在静水中的船速:(16+8)2=12(千米/秒),水流的速度:(16-12)=4(千米/时),乙船在顺水中的船速:122+4=28(千米/时),乙船在逆水中的船速:24-4=20(千米/时),乙船顺水航行的时间:56028=20(小时),乙船在逆水中航行的时间;56020=
24、28(小时),乙船往返两港的时间20+28=48(小时)。点评:难度较大,解答过程复杂。2.甲、乙两港相距360 千米,一轮船往返两港需35 小时,逆流航行比顺流航行多花了5小时。现在有一机帆船,静水中速度是每小时12 千米,这机帆船往返两港要多少小时?考点:船在顺水中的问题、船在逆水中的问题。分析:先求出轮船顺水和逆水航行的时间,再求出轮船顺水速度和逆水速度,然后根据公式求出水流的速度,再分别求出级帆船的在顺水和逆水中的速度,最后求出机帆船顺水和逆水航行的时间,求和即可。解答:轮船顺水航行的时间:(35-5)2=15(小时),轮船逆水航行的时间:35-15=20(小时),轮船顺水速度:360
25、15=24(千米/时),轮船逆水速度:36020=18(千米/时),水流速度:(24-18)2=3(千米/时),机帆船顺水速度:12+3=15(千米/时),机帆船逆水速度:12-3=9(千米/时),机帆船顺水航行的时间:36015=24(小时),机帆船逆水航行时间:3609=40(小时),机帆船往返两港的时间24+40=64(小时)。点评:难度较低,解答过程复杂。3.某船往返于相距180 千米的两港之间,顺水而下需用10 小时,逆水而上需用15 小时。由中高考复习精品,为中高考保驾护航!祝您金榜提名!爱心 责任 奉献于暴雨后水速增加,该船顺水而行只需9 小时,那么逆水而行需要几小时?考点:船在
26、顺水中的问题、船在逆水中的问题。分析:先求出船顺水中船速和逆水中船速,再求出静水中船速,求出暴雨后顺水中船速,再求出暴雨后水流速度,进而求出暴雨后逆水船速,即可求出暴雨后逆水而行需要的时间。解答:顺水船速:18010=18(千米/时),逆水船速:18015=12(千米/时),船在静水中的速度:(18+12)2=15(千米/时),暴雨后顺水船速:1809=20(千米/时),暴雨后逆水船速:15-(20-15)=10(千米/时),暴雨后逆水而行需要的时间:180 10=18(千米/时)。点评:难度较大,解答过程复杂。4.有甲、乙两艘船,甲船在静水中的速度是26 千米/时,乙船在静水中的速度是24
27、千米/时,水流的速度是2 千米/时,它们从A、B两港出发,甲在上游的A港,乙在下游的B港,两港相距200 千米,它们同时相向而行,多长时间以后相遇?考点:船在顺水中的问题、船在逆水中的问题。分析:此题虽然给出了水流的速度,但是在实际计算中并不起到什么作用,因为它在两艘船速度相加时被抵销。解答:相遇的时间:200(26+2+24-2)=4(小时)。点评:难度较低,考察对基本知识,干扰条件的思考。5.一艘船在从A地到 B,用时 9 小时,水流的速度是2 千米/时,船在逆水中行驶的速度是16 千米/小时,求A、B两地的距离。考点:船在顺水中的问题、船在逆水中的问题。分析:可先求出船在顺水的中的速度,然后乘以顺水而行的时间即可。解答:船在顺水中的速度:16+2+2=20(千米/时),A、B两地间距离:209=180(千米)。点评:难度较低,考察基本知识。6.一艘渡轮在静水中每小时行9千米,在一段河中逆水航行3 小时行了21 千米。这条河水流的速度是多少?考点:船在逆水中的问题。分析:先求出船在逆水中的速度,再用船在静水中的速度减去船在逆水中的速度即可。解答:这条河水流的速度是:9-(213)=2(千米/时)。点评:难度较低,考察基本知识。