《多边形的外角和(精品).pptx》由会员分享,可在线阅读,更多相关《多边形的外角和(精品).pptx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、既然我们已经知道什么叫三角形,你能根据三角形既然我们已经知道什么叫三角形,你能根据三角形的定义,说出什么叫四边形吗?的定义,说出什么叫四边形吗?四边形是由四边形是由四条四条不在同一直线上不在同一直线上的线段首尾顺次连结组成的平面的线段首尾顺次连结组成的平面图形,记为四边形图形,记为四边形ABCD 五边形,它是由五边形,它是由五条五条不在同一直不在同一直线上的线段首尾顺次连结组成的线上的线段首尾顺次连结组成的平面图形,记为五边形平面图形,记为五边形ABCDE 一一般般地地,由由n条条不不在在同同一一直直线线上上的的线线段段首首尾尾顺顺次次连连结结组组成成的的平平面面图图形形称称为为n边边形形,又
2、又称称为为多边形多边形那么多边形的定义呢?下面所示的图形也是多边形,但不在我们下面所示的图形也是多边形,但不在我们现在研究的范围内现在研究的范围内。注注 意意我们现在研究的是如右图所示的多边形,也就是所谓的凸多边形 有什么不同?有什么不同?凹多边形凹多边形凸多边形凸多边形1.1.如图如图9.2.1所示,所示,A、D、C、ABC是四边形是四边形ABCD的四个内角的四个内角 3.CBE和和ABF都都是是与与ABC相相邻邻的的外外角角,两两者互为对顶角者互为对顶角,四边形有八个外角。,四边形有八个外角。既然三角形有三个既然三角形有三个内角、三条边,六个外角,内角、三条边,六个外角,那么四边形有几个内
3、角?几条边?几个外角呢?那么四边形有几个内角?几条边?几个外角呢?2.AB2.AB,BCBC,CDCD,DADA是四边形是四边形ABCD的四条边的四条边 那么五边形有几个内角?几条边?几个外角呢?那么五边形有几个内角?几条边?几个外角呢?那么六边形有几个内角?几条边?几个外角呢那么六边形有几个内角?几条边?几个外角呢?那么那么n n边形有几个内角?几条边?几个外角呢边形有几个内角?几条边?几个外角呢?六边形有六边形有6 6个内角,个内角,6 6条边,条边,1212个外角个外角五边形有五边形有5 5个内角,个内角,5 5条边,条边,1010个外角个外角n n边形有边形有n n个内角,个内角,n
4、n条边,条边,2n2n个外角个外角 请大家细心地填一填,多边形的内角,边,外请大家细心地填一填,多边形的内角,边,外角三者的关系表,你能发现什么规律?角三者的关系表,你能发现什么规律?3344556677nn681012142n 三角形如果三条边都相等,三个角也都相等,那么这三角形如果三条边都相等,三个角也都相等,那么这样的三角形就叫做样的三角形就叫做正正三角形。三角形。如果多边形各如果多边形各边边都相等,各个都相等,各个角角也都相等,那么也都相等,那么这样的多边形就叫做这样的多边形就叫做正多边形正多边形。如正三角形、正四如正三角形、正四边形(正方形)、正五边形等等边形(正方形)、正五边形等等
5、。正三角形正三角形正四边形正四边形正五边形正五边形正六边形正六边形正八边形正八边形(或正三边形或正三边形)(或正四边形或正四边形)连结多边形不相邻的两个顶点的线段叫做多边连结多边形不相邻的两个顶点的线段叫做多边形的对角线形的对角线.线段线段AC是四边形是四边形ABCD的一条对角线;的一条对角线;多边形的对角线用虚线表示。多边形的对角线用虚线表示。请大家思考:五边形请大家思考:五边形ABCDE共共有几条对角线有几条对角线呢呢?五边形五边形ABCDE共共有有5 5条对角线条对角线。请大家思考:六边形请大家思考:六边形ABCDEF共共有几条对角线有几条对角线呢?呢?六边形六边形ABCDEF共共有有9
6、 9条对角线条对角线。有没有什么有没有什么规律呢?规律呢?请问:请问:四四边形从一个顶点出发,能引出几条对角线边形从一个顶点出发,能引出几条对角线?请问:请问:五五边形从一个顶点出发,能引出几条对角线边形从一个顶点出发,能引出几条对角线?请问:请问:六六边形从一个顶点出发,能引出几条对角线边形从一个顶点出发,能引出几条对角线?请问:请问:N边形从一个顶点出发,能引出几条边形从一个顶点出发,能引出几条对角线对角线?123N-3 我们已经知道一个我们已经知道一个三角形的内角和等于三角形的内角和等于180,那么四边形的内角和等于多少呢?五边形、六边形那么四边形的内角和等于多少呢?五边形、六边形呢?由
7、此,呢?由此,n边形的内角和等于多少呢?边形的内角和等于多少呢?我们学习数学的我们学习数学的基本思想什么?基本思想什么?化未知为已知化未知为已知 那么我们能不能利用那么我们能不能利用三角形的三角形的内角和,来求内角和,来求出四边形的内角和,以出四边形的内角和,以及五边形、六边形,及五边形、六边形,n边形的内角和?边形的内角和?请你认真地想一想,你能通过怎样的方法把多边形请你认真地想一想,你能通过怎样的方法把多边形转化转化为三角形?为三角形?345n-2540 720 900 180 (n-2)1.从一个顶点出发从一个顶点出发由此,我们就可以得出:n边形的内角和为边形的内角和为_(n-2)180
8、 它有什么作用它有什么作用呢呢?1.知道多边形的边数知道多边形的边数,可以求出多边形的度数可以求出多边形的度数.2.知道多边形的度数知道多边形的度数,可以求出多边形的边数可以求出多边形的边数.例2.已知多边形的内角和的度数为900,则这个多边形的边数为_解(n2)180=900 (n2)=900/180 (n2)=5 n=5+2 n=77哇哇!这么简单呀这么简单呀!那么对于正多边形来说那么对于正多边形来说,又遇到怎样的问题呢又遇到怎样的问题呢?因为正多边形的每个角相等因为正多边形的每个角相等,所以知道所以知道正多边形的边数正多边形的边数,就可以求出每一个内角的度数就可以求出每一个内角的度数.(
9、n2)180/n例例4.正五边形的每一个正五边形的每一个内内角等于角等于_,外角等于外角等于_.例例5.如果一个正多边形的一个内角等于如果一个正多边形的一个内角等于120,则这个则这个多边形的边数是多边形的边数是_解解:(n2)180/n=(52)180/5=540/5=108解:120n=(n2)180 120n=n180-360 60n=360 n=6例例5.如果一个正多边形的一个内角等于如果一个正多边形的一个内角等于150,则这个则这个多边形的边数是多边形的边数是_A.12 B.9 C.8 D.7A例例7.如果一个多边形的边数增加如果一个多边形的边数增加1,则这个多边形的则这个多边形的内
10、角和内角和_增加增加180 例例6.如果一个多边形的每一个外角等于如果一个多边形的每一个外角等于30,则这个则这个多边形的边数是多边形的边数是_解解;设五边形中前四个角的度数分别是设五边形中前四个角的度数分别是x,2x,3x,4x,则第五个角度数是则第五个角度数是x+100.X+2x+3x+4x+x+100=(52)18011X+100=54011X=440X=40则这个五边形的内角分别为则这个五边形的内角分别为40,80,120,160,140.例例8.五边形中五边形中,前四个角的比是前四个角的比是1:2:3:4,第五个角比第五个角比最小角多最小角多100,则这个五边形的内角分别为则这个五边
11、形的内角分别为_ 请你认真地想一想,你能通过怎样的方法把多边形请你认真地想一想,你能通过怎样的方法把多边形转化转化为三角形?为三角形?23456n-1180 36 0 540 720 900 180 (n-1)-180 2.从边上的一个点出发从边上的一个点出发 请你认真地想一想,你能通过怎样的方法把多边形请你认真地想一想,你能通过怎样的方法把多边形转化转化为三角形?为三角形?34567n180 36 0 540 720 900 180 n-3603.从多边形内一个点出发从多边形内一个点出发 请你认真地想一想,你能通过怎样的方法把多边形请你认真地想一想,你能通过怎样的方法把多边形转化转化为三角形
12、?为三角形?180 n-36 0=180 n-2X180=180(n-2)4.从多边形外一个点出发从多边形外一个点出发 前面我们学习了三角形的外角和是前面我们学习了三角形的外角和是360 ,当,当时是怎样研究出来的?时是怎样研究出来的?ABCDEF1.先把三角形的三个外角和三个先把三角形的三个外角和三个内角这六个角内角这六个角的和求出来,刚好是三个平角。的和求出来,刚好是三个平角。2.再用这六个角的和减去三个内角的和,剩下再用这六个角的和减去三个内角的和,剩下的就是三角形的外角和了!的就是三角形的外角和了!那那么么你你能能研研究究出出四四边边形形的的外外角角和和吗吗?整体思路:1.先求4个外角
13、+4个内角的和;内角的和;2.再减去再减去4个内角的和个内角的和容易看出,容易看出,4个外角个外角+4个个内角内角=4个平角个平角而而4个个内角的和是内角的和是360 ,那么那么四边形的外角和四边形的外角和就是就是4X 180-360=360那么出五边形,六边形,那么出五边形,六边形,n边形的外角和吗?边形的外角和吗?五边形的外角和五边形的外角和就是就是5X 180-540=360 六边形的外角和六边形的外角和就是就是6X 180-720=360。n边形的外角和边形的外角和就是就是nX 180-(n-2)X 180=(n-n+2)X 180=360 任任意意多多边边形形的的外外角角和和都都为为
14、360 例例9.正五边形的每一个外角等于正五边形的每一个外角等于_.每一个内角等每一个内角等于于_,72144例例10.如果一个正多边形的一个内角等于如果一个正多边形的一个内角等于120,则这则这个多边形的边数是个多边形的边数是_6例例11.如果一个正多边形的一个内角等于如果一个正多边形的一个内角等于150,则这则这个多边形的边数是个多边形的边数是_A.12 B.9 C.8 D.7A例例12.如果一个多边形的每一个外角等于如果一个多边形的每一个外角等于30,则这个则这个多边形的边数是多边形的边数是_12例例13.一个正多边形的一个内角和是外角和的一个正多边形的一个内角和是外角和的2倍倍,则则这
15、个多边形为这个多边形为()A.三角形三角形 B.四边形四边形 C.五边形五边形 D.六边形六边形例例14.一个正多边形的一个内角和与外角和的比一个正多边形的一个内角和与外角和的比是是7:2,则这个多边形的边数为则这个多边形的边数为()思考一:一个三角形中,它的内角最多可以有几个锐角思考一:一个三角形中,它的内角最多可以有几个锐角?为什么?为什么?思考二:一个四边形中,它的内角最多可以有几个锐角思考二:一个四边形中,它的内角最多可以有几个锐角?为什么?为什么?思考三:一个多边形中,它的内角最多可以有几个锐角思考三:一个多边形中,它的内角最多可以有几个锐角?为什么?为什么?一个多边形中,它的外角最多可以有几个钝角?一个多边形中,它的外角最多可以有几个钝角?3 与多边形的每个内角相邻的外角分别有两个,与多边形的每个内角相邻的外角分别有两个,这两个外角是对顶角从与每个内角相邻的两这两个外角是对顶角从与每个内角相邻的两个外角中分别取一个相加,得到的和称为多边个外角中分别取一个相加,得到的和称为多边形的外角和形的外角和