《数学复习学问点归纳共享高二.docx》由会员分享,可在线阅读,更多相关《数学复习学问点归纳共享高二.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学复习学问点归纳共享高二 数学是规律性很强的一门学科,同学想要学好数学,需要知道一些的学习方法以及学会总结学问点。下面就是我给大家带来的高二数学学问点总结,盼望能关心到大家! 高二数学学问点总结1 1.不等式证明的依据 (2)不等式的性质(略) (3)重要不等式:|a|0;a20;(a-b)20(a、bR) a2+b22ab(a、bR,当且仅当a=b时取“=”号) 2.不等式的证明方法 (1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法. 用比较法证明不等式的步骤是:作差变形推断符号. (2)综合法:从已知条件动身,依据不等式的性质和已证明过的不等式,推导出所要证明的
2、不等式成立,这种证明不等式的方法叫做综合法. (3)分析法:从欲证的不等式动身,逐步分析使这不等式成立的充分条件,直到所需条件已推断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法. 证明不等式除以上三种基本方法外,还有反证法、数学归纳法等. 高二数学学问点总结2 导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量x时,函数输出值的增量y与自变量增量x的比值在x趋于0时的极限a假如存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点四周的变化率。假如函数的自变量和取值都
3、是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性靠近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是全部的函数都有导数,一个函数也不肯定在全部的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不行导。然而,可导的函数肯定连续;不连续的函数肯定不行导。 对于可导的函数f(x),xf(x)也是一个函数,称作f(x)的导函数。查找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来
4、的函数,即不定积分。微积分基本定理说明白求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 高二数学学问点总结3 反正弦函数的导数:正弦函数y=sinx在-/2,/2上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在-/2,/2区间内。定义域-1,1,值域-/2,/2。 反函数求导方法 若F(X),G(X)互为反函数, 则:F(X)_G(X)=1 E.G.:y=arcsin_=siny y_x=1(arcsinx)_(siny)=1 y=1/(siny)=1/(cosy)=1/根号(1-sin2y)=1/根号(1-x2) 其
5、余依此类推 高二数学学问点总结4 分层抽样 1.分层抽样(类型抽样): 先将总体中的全部单位根据某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采纳简洁随机抽样或系用抽样的方法抽取一个子样本,最终,将这些子样本合起来构成总体的样本。 两种方法: 1.先以分层变量将总体划分为若干层,再根据各层在总体中的比例从各层中抽取。 2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的挨次整齐排列,最终用系统抽样的方法抽取样本。 2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,全部的样本进而代表总体。 分层标准:
6、(1)以调查所要分析和讨论的主要变量或相关的变量作为分层的标准。 (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。 (3)以那些有明显分层区分的变量作为分层变量。 3.分层的比例问题: (1)按比例分层抽样:依据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。 (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会特别少,此时采纳该方法,主要是便于对不同层次的子总体进行特地讨论或进行相互比较。假如要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。 用样本的数字
7、特征估量总体的数字特征 1、本均值: 2、样本标准差: 3.用样本估量总体时,假如抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不行避开的。 虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估量,但这种估量是合理的,特殊是当样本量很大时,它们的确反映了总体的信息。 4.(1)假如把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变 (2)假如把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍 (3)一组数据中的值和最小值对标准差的影响,区间的应用; “去掉一个分,去掉一个
8、最低分”中的科学道理 两个变量的线性相关 1、概念: (1)回归直线方程(2)回归系数 2.最小二乘法 3.直线回归方程的应用 (1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系 (2)利用回归方程进行猜测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估量,即可得到个体Y值的容许区间。 (3)利用回归方程进行统计掌握规定Y值的变化,通过掌握x的范围来实现统计掌握的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过掌握汽车流量来掌握空气中NO2的浓度。 4.应用直线回归的留意事项 (1)做回归分析要有实际意义; (2)回归分析
9、前,先作出散点图; (3)回归直线不要外延。 高二数学学问点总结5 直线与圆: 1、直线的倾斜角的范围是 在平面直角坐标系中,对于一条与轴相交的直线,假如把轴围着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0; 2、斜率:已知直线的倾斜角为,且90,则斜率k=tan. 过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。 3、直线方程:点斜式:直线过点斜率为,则直线方程为, 斜截式:直线在轴上的截距为和斜率,则直线方程为 4、直线与直线的位置关系: (1)平行A1/A2=B1/B2留意检验(2)垂直A1A2+B1B2=0 5、点到直线的距离公式; 两条平行线与的距离是 6、圆的标准方程:.圆的一般方程: 留意能将标准方程化为一般方程 7、过圆外一点作圆的切线,肯定有两条,假如只求出了一条,那么另外一条就是与轴垂直的直线. 8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.相离相切相交 9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长 数学复习学问点归纳共享高二